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Abstract-The case of double parallel reaction scheme taking place in a porous catalytic pellet is analyzed. 
Effectiveness factor expressions for both reactions are derived after matching asymptotic solutions strictly 
valid for small and lame values of the Thiele moduli 

It is assumed that th: kinetics of both reactions follow a general irreversible power law model, that 
isothermal conditions prevail and that external mass transfer, resistences are negligible. 

Approximate results in terms of effectiveness factors comoare fairly well with exact results obtained bv 
nu&&cal integration of the differential equations. 
circumstances is around 3%. 

INTRODUCTION 

Many reactor design calculations involve the problem 
of a parallel reaction system in heterogeneous catalyst 
pellets. In such cases product distribution can be 
influenced by mass diffusion within the pellets and the 
effectiveness factor calculations can become an im- 
portant and time consuming step (see Wheeler[l]). 

For this reason there is a strong need for accurate 
and simple calculation methods for effectiveness fac- 
tors in coupled reaction systems. In this line Wedel 
and Luss[2] and Gottifredi et al. [3, 41 developed 
rational expressions for the effectiveness factor based 
on matching techniques from the knowledge of as- 
ymptotic solutions. However these approximate solu- 
tions are only valid for the case of a single reaction. 

Pawlowski [5] and Roberts [6] performed an asymp- 
totic analysis for the case of parallel reactions as- 
suming different values of reaction orders. Roberts [6] 
also developed expressions to estimate selectivity and 
the maximum effect of pore diffusion. More recently 
Cukierman and Lemcoff[7] developed approximate 
asymptotic expressions for the effectiveness factors 
when the Thiele moduli of both reactions are very 
large. They however considered much more complex 
kinetic expressions than in previous works. 

As far as the authors can ascertain, there is no 
analytic or approximate procedure to estimate the 
effectiveness factors of both reactions, except using 
numerical methods, for the whole range of Thiele 
moduli. 

The aim of the present contribution is to show that 
a previously developed procedure to estimate 
effectiveness factor for complex reactions can also be 
used for the case of a double parallel independent 
reaction system. isothermal conditions and uniform 
catalytic activity in a slab porous pellet will be 

*Author to whom correspondence shoold be addressed. 
tPINMATE CUBA-CONICET). 

Maximum dehation is below 10% and in m& 

considered. However these are not strong limitations 
in solving the overall general problem as discussed 
previously [4] _ 

ANALYSIS 
Let us consider the following reaction scheme 

taking place in a porous slab catalyst pellet: 

A + Y, B -+products (1) 

A + v,C -products. (2) 

Assuming a power law kinetic expression for both 
reactions the dimensionless mass balance for species 
A, B and C can be written as: 

(3) 

where m, n, p and 4 represent reaction orders and 

(6ad) 

C’ being the dimensional concentration, D the 
effective diffusivity, k, and k, the specific kinetic 
reaction constants for reactions (1) and (2) re- 
spectively, L the half thickness of the slab pellet and 
subindexes A, B, C and S denote properties of species 
A, B. C and values evaluated at the external surface 
of the pellet respectively. 
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The system (3&(5) must be solved subject to the 
following boundary conditions 

x=0 C,=C,=C,=I 

x=, d$z&~=o 
(7a, b) 

from which the following relation is easily found: 

CA-;C,-;C,=l- (8) 

It will be assumed that R > 0 meaning that the 
concentration of special A under no circumstances 
can vanish. Since p, q, m and n are arbitrary the 
reaction system is so chosen that 

h 
r=l<l. 

hr 
(9) 

The general solution of the system (3H5) is very 
difficult even with numerical methods. However it is 
possible to obtain asymptotic solutions when hl+O 
and when h,+oo. In fact Cukierman and Lemcoff[7l 
have already presented the case where h,+co al- 
though it has not been compared with results gencr- 
ated by the numerical integration of the governing 
differential equations (3)-(S). 

If h,+O clearly h,-rO and following the per- 
turbation procedure of Gottifredi et af. [3] up to terms 
to the order of h12 or h2’ a series solution can be 
proposed: 

c, = 1 + h,ZB, + 0(/l,‘) 

Cc = 1 + r*h,*C, + O(h,3 

and from eqn (8) 

(10) 

(11) 

c,=1+(g3,tr~(~G. (12) 

By replacing (lOHl2) in (4) and (5) and equating 
terms of like powers of h,, it can be shown that the 
following equations must be satisfied: 

d2B, 
* = YE (13) 

(14) 

subject to: 

x=0 B,=C,=O (15) 

x = 1 dB,/dx = dC,/dX = 0. (16) 

After very simple algebraic steps it is possible to 

show that under these assumptions: 

s 

1 
*I = CJCBm dX = 1 - u,#I,~ + 0(h,4) 

0 
and 

I 
tt2 = 

where 
s 

C,Tc” dX = 1 - urh,’ + O(h,‘) 
0 

01 =f(@Y8+P)+Pr2) 

% =; ((Vc + 4)r2 + 4) 

(17) 

(18) 

(19) 

(20) 

On the other hand when h,*dcn and h,*-~co, 
Cukierman and Lemcoff[l have shown that: 

(22) 

where the parameter 6 and p depend upon the values 
of m, n, p, 4, r, Ys and ye through the following 
expressions: 

a= z 1 

[ S{ l-c-$,- l)+$(c,“- 1) P 
YE 0 1 

1 
112 

x CBmdCs (23) 

1++- 1) 

+&,1’“- l)p&‘dC,lle. (24) 
YB 

These integrals must be evaluated through some 
suitable numerical technique. However, in an attempt 
to render the whole procedure analytical and taking 
into account that the reactions are taking place in the 
outer shell of the pellet and that eqns (23) and (24) 
can only be solved when p and g are both equal to 
“one” the terms in brackets in the integrals can be 
expanded assuming that (C, - 1) * 1 and 

(Cc - 1) 6 1. With this assumption we found: 

2 l/2 
6=_ -- 01 1 

(m+l) (m+2f;m+I) 

:i >1 
‘+W 

l/Z 

YB Yc 

2’P 1 p= - 0-i -- (n+l) 0+2;?z+l) 

I; 11 
$+’ 

IP 

WY, 

(25) 

(26) 



Effectiveness factor and selectivity estimation for a parallel reaction system 851 

with 

w = 22 “*r. 0 YB 

Some sample calculations have shown that eqns (25) 
and (26) predict fairly well values of d and p. Max- 
imum deviations arc below 2% with r ranging be- 
tween 0.2 and 0.8. 

It could be argued that the condition h,+co does 
not necessarily imply hz-+co but from a practical 
point of view that should be the situation because if 
!~,+a, and h, is small it means that the system of 
reaction will almost be uncoupled and so of small 
practical interest. 

The procedure now follows the same fashion as in 
previous contributions (3) and (4). It will be assumed 
that n, and n2 can be well represented in the whole 
range of h, values by the following expressions: 

(b, + h,Y 
‘I’ = a’ (c, + h,*) 

and 

(62 + h,y 
% = 4 (cz + h,2) 

(28) 

(29) 

After expanding eqns (28) and (29) for small and 
large values of h, and comparing the resulting expres- 
sions with eqns (17), (18) (21) and (22) we found that 
al, a,, b,, b2, cl and cr are given by: 

a, = 6; b, = (q/a,)‘; u2 = (p/r); 6, = (q/czJ2 
(30a-d) 

(31) 

(32) 

In those cases where the argument of the square 
root becomes negative this term is neglected as 
discussed by Gottifredi et aZ.[4]. Although some 
precision is lost the method is still straightforward 
and simple and the deviation between approximate 
and exact results of effectiveness factor is still accept- 
able for reactor design calculation purposes. 

RESULTS AND DISCUSSION 

Values of rh, and Q obtained with eqns (28) and 
(29) for different values of m, n, p, 4, r, yc and yB were 
compared with their corresponding values generated 
by the numerical solution of the system (3)--(s). Exact 
values of v, and qz will be denoted by tl,N and rtZN 
respectively. They were calculated by tbe orthogonal 
collocation method outlined by Villadsen and 
Michelsen[S]. A change of variable u = (1 - X2) was 
made in the differential equations (4) and (5) and 
boundary conditions (7a, b) and the collocation 

CES vu,. X?. N”. - 

points were zeros of PC’, -‘/r)(u). Up to five interior 
points, depending on h, values, were used and the 
effectiveness factors were evaluated by a quadrature 
formula. 

In Tables l-3 the effectiveness factor values ob- 
tained from the analytic expressions (columns headed 
by ‘1, and Q) and from the numerical method (q,,., and 
r& are presented. It can be clearly seen that there is 
a very good agreement between approximate and 
exact values for the range of parameters investigated. 
Maximum deviation for PI, and Q predictions are 
below 5 and 10% respectively which is fairly accept- 
able for most reactor engineering calculation pur- 
poses. 

It should be noticed that theoretical results of 
Cukierman and Lemcoff[7j produce extremely good 
asymptotic values of effectiveness factor for large 
values of Thiele modulus. This was not investigated. 
Moreover the analytical prediction of their finding 
through expressions (23) and (24) is suitable for large 
values of h, as can be seen in Tables l-3. 

It can be concluded that the procedure presented 
may be safely used for estimating effectiveness factors 
when a paralell reaction scheme is considered. More- 
over with this analytical procedure it is possible to 
take into account external mass transfer resistances 
as shown before[4]. 

CONCLUSIONS 

This is the first attempt, as far as the authors can 
ascertain, to predict with an analytical approximate 
procedure the effectiveness factors of a set of parallel 
independent reactions taking place within a porous 
catalytic slab pellet. It was assumed that both reac- 
tions are well represented by an irreversible power 
law kinetic expression. 

As shown in Tables l-3 there is in general a fairly 
good agreement between corresponding q, and q2 
values predicted by our procedure and those obtained 
by a numerical technique. Maximum deviations for rl, 
and Q predictions are below 5 and loo% respectively 
although a common figure for this deviation is about 
3O/,. It should be stressed that with these very simple 
expressions it is possible to predict q, and q2 values 
for the complete range of h,, and then A, values. 
Accordingly the selectivity is easily estimated as: 

s,, = r - 2(rl,lsz) (33) 

and the effect of mass transfer phenomena on it can 
be forecast along the reactor. In Fig. 1 the selectivity 
S,_, is plotted as a function of h, for different cases. 
It can be seen that as the diffusional restriction 
becomes more severe the effect on the selectivity is 
increasingly important. In some cases this effect can 
be SO notable that it can reverse the selectivity (see 
curve E). 

With this simple procedure it is also possible to 
take into account the effect of external mass transfer 
resistances on the selectivity since the change of 
boundary conditions can be easily taken into account 
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Table 2. 

853 

I In=2 i l-.=1; P= 1 i q= 1 I 

~1 
.9943 0.9817 0.9917 0.9904 0.9904 

Table 3. 

l-1 

m = 1;n = 1;p = 2,q =I / m = 2; ” = 1; p = 1; q = 2 

‘d b’ 2; &= 2, z = 0.5 I &= IO; x“= 2; r = 0.8 

__ -l__.I1 __ __1_~_1_l_I 

I I I 
1.2 0.5 1 2 5 hl 

Fig. 1. Selectivity to reaction (1) S,, as a function of Thick. modulus II,. Curves A, B mtd C: 
i~~=~~=p=q=l and ys=yc=2, t-=0.5; y,=lO, yc=2, r=O.S; yB=yc=2. r=Q.g respectively. 
CurveD:m=2,m=p=q- 1,y,=y,=2,r=0.8.CurveE:m=2,m=p=1,q=2,y,=10,y,=2, 

r = 0.8. 
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with a trial and error procedure as previously 
shown [3]. 

The asymptotic solutions obtained for the case of 
Is,~+O can also be used to generate criteria to estab- 
lish the absence of mass transfer resistance inside the 
PIlet. 

Ac/cnowZedgement-The authors are grateful to Consejo 
National de Investigaciones Cientificas y Tbznicas for sup- 
porting this work. 

NOTATION 
parameters defined by eqn (28) 
parameters defined by eqn (29) 
auxiliary expansion fim@on defined by 

eqn (10) 
dimensionless concentration 
auxiliary expansion function defined by 

eqn (11) 
effective diffusivity coefficient 
Tbiele modulus for reactions 1 and 2 

respectively 
reaction constants for reactions 1 and 2 

respectively 
half thickness of the slab 
order of reaction for species B 

order of reaction for species C 
orders of reaction for species A in reaction 

1 and 2 respectively 

r Thiele modulus ratio 
R constant defined by eqn (8) 
x dimensionless coordinate 

Greek symbols 

yB, yc parameters defined by eqns (6~. d) 
6 parameter defined by eqn (21) 

q,, q2 effectiveness factors for reaction 1 and 2 
(T,, o, parameters defined by eqns (17,18) 

w parameter defined by eqn (27) 

Subindexes 

A,B,C forspeciesA,BorC 
S surface value 
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