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Abstmct-An analytical solution is presented for the concentration profiles inside a catalyst particle with 
uniform activity for a parallel-consecutive reaction scheme containing a reversible step and in which the 
reactions are all of the first order. 

An accurate approximate solution for the surface fluxes was developed for the case of non-uniform 
activity. 

The effects of the degree of reversibility of the first step of the consecutive chain and of the ratio of the 
surface concentrations of the intermediate and feed component are illustrated. The influence of a non 
uniform catalyst activity is shown to be important, particularly in the mixed control regime. 

1. INTRODUCTION 

Many catalytic processes are carried out under con- 
ditions in which the rate is diffusion limited. The 
phenomenon of simultaneous diffusion and reaction 
inside a catalyst particle has received considerable 
attention (Petersen, 1965), but mainly for singIe 
reactions and simple kinetics, for which analytical 
solutions are possible. 

The introduction of the generalized modulus (Aris, 
1965; Petersen, 1965; Bischoff, 1965) has allowed one 
to deal in a semi-analytical way with more complex 
kinetic equations, of the Hougen-Watson type (Sat- 
terfield, 1970), but the technique is still limited to 
single reactions. For more complex reactions no ana- 
lytical solution of the continuity equations for the key 
components is available. The numerical solution is 
not always trivia1 and is always time consuming, in 
particular when it has to be carried out in each point 
of the grid used in the integration of the continuity 
equations of the species flowing through the reactor. 

Xu and Froment (1989) and Soliman (1992) have used 
spline collocation for this purpose and discussed the 
problems encountered in real situations. There is, in 
spite of the progress in numerical techniques and 
computer power, still a need for a rapid solution of the 
reaction+Iiffusion problem. 

The present paper deals with analytical and ap- 
proximate solutions for reaction schemes comprising 
parallel and consecutive steps taking place inside 
a catalyst particle with distributed activity. 

2. PARALLEIrCONSECUTIVE REACTION SCHEME. 

CONCENTRATION PROFILES FOR UNIFORM 

ACTIWTY AND APPROXIMATE SOLUTION FOR 

SURFACE FLUXES AND SELECTIVITY, VALID 

FOR ANY ACTIVITY DlSTRIl3UTION 

Consider the parallel+onsecutive relation scheme 

aAA 
k* 

= B - products 

” D L 

in which all the reactions are of the first order. 
This is a scheme of relative complexity already, 

likely to be of use in the simulation of industrial 
processes. Hydrocarbon oxidation processes -corres- 
pond to such a scheme, but in that case the first step in 
the consecutive chain is not reversible. The above 
scheme was analyzed by Do (1982) through a complic- 
ated analytical procedure. The solution presented 
here is very simple. 

The porous catalyst particle is considered to have 
either a planar, cylindrical spherical shape (n = 0, 1, 2, 
respectively) with characteristic length R and with an 
activity distribution function f(x). 

The dimensionless continuity equations for A and 
B in an isothermal pellet can be written as 

= h’x”C(x)[C, - (;) c,] (I) 

d dCn 

-( > dx X”dx 
= h2x”f@)[(w + PjcB - Y&Al t2) 
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where x is the spatial coordinate, C the concentration, 
normalized with respect to the corresponding surface 
value of component A, and indexes 1 and 2 refer to the 
first step, QA + B, and to the second step, B --, prod- 
ucts, of the consecutive chain, respectively. The 
groups h2, w, p, q and y are defined as follows: 

h2 = (k,R2/qD& w = &D/L&&) 

P = w/K 
DA/DB 

Y= 
@A 

(3) 

1 

’ = 1 + (k,/k,) 

where D represents the effective diffusivity, K the 
thermodynamic equilibrium constant for the first re- 
action and ki the reaction rate coefficient. Equations 
(I) and (2) must be solved subject to the following 
boundary conditions: 

C” = 1, CB = c: atx=l (4a) 

dC, dCB 
-z-=0 atx=O, 
dx dx W4 

The analytical solution of this system can be found 
for the case of uniform activity distribution 
[f(x) = 11. It can be shown that 

c, = (1 + AXO) 
cosh(ehx) _ 1xo cosh( /3%x) 

cash(&) cosh( /?“%) 
(5) 

X = X,, coshW’W 
cash /3% (6) 

where 
Ce = x - l-c, (7) 

xo=r+c: (8) 

E2 = (1 + w + p - P) (9a) 

(n+ 1) 2 
( > 

= (1 + dXO)(h&)2 
x=1 

x [H, + exp ( - aH,)]-l/Z 

- Ih2XoB[H, + exp ( - uH,)]-“~ (14) 

where the parameters HI, H2 and a must be deter- 
mined from the following expressions: 

H1 = Csh/(n + 1)12 
f(1) ’ 

H2 = CW(n + UI’B 
f(l) 

a= 1 - 2f(l)(n + 
(15) 

1){j,‘x-m[~,“xn~(x)dx]2dx}. 

HI, H2 and a are functions of the pellet geometry and 
catalyst activity distribution inside the pellet. A table 
with the value of the integral in the bracket multiplied 
by (n + 1) is given by Gottifredi et al. (1986) for two 
distribution functions (linear and parabolic) and for 
three particle shapes. 

Sutradhar et al. (1986) also solved this problem 
following a similar procedure, but the asymptotic 
solutions were not matched and their results are only 
valid in the region where h < 1, i.e. where the influ- 
ence of diffusion is small. 

It should be noticed that the approximate solution 
does not yield the profiles inside the particle, only the 
surface fluxes, which is sufficient for most purposes, 
anyway. 

Given the kinetics of the reaction network con- 
sidered here, an effectiveness factor, 11, for the con- 
sumption of A can be obtained from the definition: 

(n+l) % ( > X=, 

rl = h2[1 - (p/v)C,o] . (16) 

Substituting (dC,/dx),= 1 in eq. (16) by its value given 
by eq. (14) yields the expression for q: 

1 = (1 + AX’)E~[(H~ + exp( - aH,)]-“L - 1X”B[H2 + exp( - aH,)]-“‘. 

Cl - (P/Y)CBl 

(17) 

(P/Y) 
The selectivity for the component B, taken over the 

A = (fi - &2) (9b) whole pellet, can now be predicted from its usual 
definition as the ratio of the rate of formation of 

8= f((l + w + P) - U -(P + w)la) (10) component B to the rate of consumption of compon- ent A, 

4Pq l/Z 

I+ [l -(p+ w)]’ (11) S = _ (dC,/dx),= I = r _ (dX/dx),= 1 

(dC,/dx),=, (dC,,/dx), = 1 ‘l*) 

VI 

r=(l-m P 
-=qw+p--8). (12) 

When the activity distribution is not uniform there 
is no analytical solution but the procedure proposed 
by Gottifredi et al. (1986) can still be used to estimate 
the fluxes at the interface. It can be shown that, for the 
case of first-order reactions suitable matching expres- 
sions valid in the whole range of h values can be 
written as 

= bX”h2[Hz + exp( - &I,)] 10 

(13) 

By combining eqs (16) and (17), the flux of A at the 
surface can be calculated as a function of ‘I. The flux 
(dX/dx),=, is obtained from eq. (13), so that 

s~r_XoBCH2+exp(-u~,]]-1’z 

?El - (P/Y)C:l 
* (19) 

Limit values of S, represented by S(0) when h* Q 1 
and by S(co) when h2 % 1, can be derived from eq. 
(19): 

S(0) = y -(w + p)CB (20) 

s(oo) = Y - (w + P + w1’2)G 
[l + w1’2 - (P/Y)CBl . (21) 
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Table 1. Comparison between exact values of (v)~ and SB with their respective approxim- 
ate values (v)~ and S1 

2401 

0.1 
0.5 
1.0 
2.0 
4.0 

10.0 
20.0 

0.1 
0.5 
1.0 
2.0 
4.0 

10.0 
20.0 

c: = 0, w = 0.50, y = 1, p = 0.1 c.0 = 0, w = 0.50, y = I, p = 10 

0.9964 0.9964 1.0 1.0 0.9649 0.9650 1.0 1.0 
0.9177 0.9180 0.96 0.96 0.5699 0.5724 0.97 0.97 
0.7477 0.7494 0.87 0.87 0.3224 0.3228 0.91 0.9 1 

0.4105 0.4725 0.70 0.70 0.1796 0.1796 0.8 1 0.8 1 
0.2453 0.2455 0.60 0.59 0.1036 0.1037 0.69 0.69 
0.0983 0.0983 0.59 0.59 0.0469 0.0470 0.59 0.59 
0.0492 0.0492 0.59 0.59 0.0237 0.0238 0.59 0.59 

cp = 0, W = 2, y = 1, p = 10 c,o = 0.4, W = 0.5, y = 1, p = 1 

0.965 1 0.9652 0.99 0.99 0.9945 0.9945 0.66 0.66 

0.5947 0.5968 0.88 0.88 0.8860 0.8866 0.60 0.60 
0.3764 0.3766 0.72 0.72 0.6995 0.7015 0.46 0.46 
0.2404 0.2406 0.54 0.54 0.4647 0.4656 0.25 0.25 
0.1442 0.1446 0.44 0.44 0.2679 0.2687 0.11 0.11 

0.0607 0.0607 0.41 0.4 1 0.1101 0.1101 0.09 0.09 

0.0303 0.0303 0.4 I 0.41 0.0551 0.0551 0.09 0.09 

Fig. 1. Selectivity S vs Thiele modulus h for a purely con- UA_3b: C; = 0, w = 2, y= 1, p = 0.1; UA-4: C; = 0.1, 

secutive scheme (q = 1): (-- ) uniform catalyst activity w = 2, y = 1, p = 1; UA-5: C; = 0.45, w = 0.5, y = 1, p = 1); 
inside the pellet (UA-la: CO, = 0, w = 0.5, Y = 1, p = 10; (----) parabolic activity distribution f(x) = 3x* (PD-la: 
IJA-lb: Cl = 0, w = 0.5, y = 1, p= 0.1; UA-2: C: = 0.1, Co, = 0, w = 0.5, y = 1, p = lo; PD-lb: c”, = 0, w = 0.5, 
w = 0.5. y = 1, p = 1; UA-3a: Ci = 0, w = 2, y = 1, p = 10. y = 1, p = 0.1). 

The solution for the purely consecutive scheme is 
completely identical, but some of the parameters take 
on different values, of course. 

An evaluation of the accuracy of the approxim- 
ate solution is possible by comparing its results for 
uniform activity with those of the exact analytical 
solution. This is done in Table 1, for q = 1. The 
approximate solution is extremely accurate: the max- 
imum difference between both solutions for q and S is 
always lower than 1%. 

3. APPLICATION OF THE EQUATIONS TO REACTOR 

DESIGN 

The application of the equations derived here to 
problems of practical interest is extremely convenient. 
Consider a plug flow catalytic reactor. One problem 
encountered with a consecutive or parallel<onsecut- 
ive reaction scheme is the distance in the reactor 
beyond which there is a net consumption of the inter- 
mediate product, B, instead of a net production. As 
shown in Fig. 1, profiles of the concentration of the 
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intermediate B inside the pellet typically exhibit 
a maximum. It follows from eqs (20) and (21) that the 
location of the maximum shifts towards the surface 
(x = 1) as the surface concentration Cg increases. The 
maximum reaches the surface for a C,” value which 
can be derived from either eq. (20) or eq. (21). The 
most conservative value, (C&r. which can be used as 
a design criterion, is the one obtained from eq. (21): 

(Cb, d Y/(W + p + wi’?. (22) 

The effect of the Thiele modulus, h, on the selectiv- 
ity for B is shown in Fig. 1 for the purely consecutive 
scheme (4 = 1). S varies between the asymptotic 
values S(0) and S(a), as expected. For given w and 
y and Cg = 0 the selectivity S(0) = 1 and neither S(0) 
nor S(co) depend on p, as can be seen from a compari- 
son of UA-la, b and UA-3a, b. For intermediate 
values of h, however, there is a significant influence of 
p on S. As p is increased (i.e. K decreased), the con- 
sumption of A and the net production of B are both 
reduced, but the selectivity increases, due to less pro- 
nounced concentration profiles. 

For Cp # 0, both S(0) and S(m) decrease with 
increasing Cg, as can be seen from a comparison of 
the curves WA-2,4,5, and the same is true, of course, 
for S at intermediate h. The choice of a reactor length 
that would avoid the selectivity to drop below a cer- 
tain value, set by economics, is easily arrived at by 
means of the equations derived here. The effect of w is 
illustrated by curves UA-2,4: the higher the w, the 
lower the selectivity, and this is more pronounced the 
higher the h. 

For the reaction schemes considered here a nonuni- 
form catalyst activity may favor the selectivity. An 
activity profile descending from the surface towards 
the center increases the selectivity for B, as can be seen 
from a comparison of PD-la, b with UA-la, b, but 
only for intermediate values of h. For very strong 
diffusional limitations the reaction takes place in 
a very narrow zone close to the surface, so that the 
activity distribution is not felt. For reaction control 
the activity distribution operates on the local fluxes of 
A and B, but for the kinetics considered here the effect 
cancels out in the selectivity. The effect off(x) on the 
selectivity was investigated in detail by Juang et al. 
(1980) for a consecutive scheme with irreversible reac- 
tions only, but by means of a numerical technique. 
Overall, their results are in line with those shown in 
Fig. 2, but their S(m) are not properly calculated, as 
the analytical solution of the present paper revealed. 

4. CONCLUSIONS 

An analytical solution is presented for concentra- 
tion profiles inside a catalyst particle for a paral- 
lel-consecutive reaction scheme with first-order 
reactions, but in which the first step of the consec- 
utive chain is reversibte. The solution is limited to 
a uniform activity of the catalyst. 

An approximate solution is obtained for the case of 
an activity distribution inside the pellet. It does not 

yield the concentration profiles, but only surface 
fluxes. This is sufficient for most practical applica- 
tions. A comparison with the analytical solution for 
uniform activity establishes the accuracy of the ap- 
proximate solution. 

The exact analytical solution and the approximate 
solution considerably simplify the evaluation of the 
performance or the design of reactors operating under 
conditions in which diffusional limitations are of im- 
portance. The reaction scheme considered here is rela- 
tively complex already and representative for a num- 
ber of commercial processes. The solutions can be 
easily extended to schemes containing more irrevers- 
ible consecutive steps and also to situations whereby 
external diffusion limitations have to be accounted 
for. It would be extremely valuable to further extend 
them to nonlinear kinetics. 

Acknowledgement-The authors are grateful for the sup- 
port provided by CONICET, Argentina, and the Belgian 
“National Fonds Voor Wetenschappelijk Onderzoek”. 
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f” 
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HI, Hz 

141, k2, h 

K 

n 

P 

i 
S 
W 

; 

NOTATION 

parameter defined by eq. (27) 
dimensionless concentration 
effective diffusivity, m:/m,s 
activity distribution function 
Thiele modulus defined by eq. (3) 
modified Thiele modulus defined by eq. 

(27) 
intrinsic kinetic constant for forward re- 
actions, s- ’ 
thermodynamic equilibrium constant 
parameter characterizing the pellet ge- 
ometry 
parameter defined by eq. (3) 
parameter defined by eq. (3) 
characteristic length of the particle, m 
selectivity defined by eq. (30) 
ratio of hl to h [see eq. (3)J 
dimensionless coordinate 
pseudocomponent dimensionless con- 
centration defined by eq. (5) 

Greek let ten 

; 

stoichiometric coefficient 
parameter, see eq. (8) 
parameter defined by eq. (3) 
parameter defined by eq. (7) 
parameter defined by eq. (9) 
parameter defined by eq. (12) 
effectiveness factor, defined by eq. (28) 
parameter defined by eq. (13) 

Subscripts 
A a component 
B a component 

Superscript 
0 pellet surface conditions 
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