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Abstract

This contribution deals with effectiveness factor (η) and concentration profile of key component estimations when a single indepen-
dent reaction takes place in a porous catalyst structure where enzymes are immobilized. The procedure is quite general since any ki-
netic expression can be handled and the case of catalytic activity distribution can also be taken into account. With the knowledge of
kinetic parameters and effective diffusivityη and concentration profiles can be estimated through very simple algebraic equations. Thus,
the numerical solution of a non linear second order boundary value differential equation, which usually needs some spline scheme, is
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The obtained approximate results are compared with numerical findings for the case of slab geometry where a very simple

rocedure can be used to solve the resulting differential non linear equation. Approximate results are shown very accurate in the w
f kinetic parameters, even in those cases where the reaction kinetics shows an apparent negative order of reaction andη values can be abov
nity. Tables are used to better compare approximate and numerical values. Concentration profile predictions are also very acc
egion nearby the external surface of the catalyst particle.

These approximate results are used to establish criteria to analyze experimental kinetic data in those cases where diffusional
hat could affect chemical parameter estimations, must be avoided.

2005 Elsevier B.V. All rights reserved.
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. Introduction

Mittal [1] pointed out the main advantages of enzyme im-
obilization in food processing. Usually, these techniques

nvolve adsorption, covalent attachment, cross linking, en-
rapment and encapsulation. The support structure needs pore
ize of appropriate dimensions to ensure uniform enzyme
oncentration inside the resulting catalyst and a reasonable
ate of diffusion of substrates and reaction products. When
hese conditions are not fully met non uniform enzyme con-
entration within the catalyst results and/or strong diffusional
nternal limitations with significant overall reaction decays.
ccording to engineering purposes a number of experimental

∗ Corresponding author. Tel.: +54 387 4255409; fax: +54 387 4251006.
E-mail address:gottifre@unsa.edu.ar (J.C. Gottifredi).

reactors have been reported[1] to test this kind of biologica
catalysts.

In recent years, there is an increasing concern to est
effectiveness factor (η) in bioengineering processes wh
immobilized enzymes are used as catalysts. Since th
netic expression is usually non linear in term of concen
tion, numerical procedures are needed to solve the res
governing differential equation for the concentration pro
inside the pellets. These procedures are not straightfor
as shown by Kubicek and Hvalacek[2] and Villadsen an
Michelsen[3].

Recently Li et al.[4] presented an approximate proced
to estimateη when chemical kinetics are well represen
by the Michaelis–Menten equation. They basically assu
that substrate concentration can be represented by a po
mial up to third degree in the dimensionless position (x) of

369-703X/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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Nomenclature

a auxiliary parameter defined by Eq.(14)
A auxiliary variable defined by Eq.(17a)
C dimensional key component concentration

(mol/l)
D effective diffusivity of key component (cm2/s)
E percent deviation|(ηN − ηA)/ηN| × 100
f(x) normalized spatial catalytic activity function

(see Eq.(5))
F(γ) variable defined by Eq.(21)
g(x) auxiliary variable defined by Eq.(17c)
Km Michaelis–Menten dimensional kinetic param-

eter (mol/l)
L dimensional characteristic catalyst dimension

(cm)
m geometrical parameter 0, 1, 2
n reaction order
r rate of reaction (mol/l s)
rm Michaelis–Menten dimensional kinetic param-

eter (mol/l s)
R dimensionless rate of reaction, Eq.(2c)
R′(1) first derivative ofRwith respect toγ evaluate

atγ = 1
x dimensionless spatial coordinate (x′/L)
x′ dimensional spatial coordinate (cm)
z auxiliary function ofγ andγc (Eq.(22))

Greek Letters
α auxiliary parameter defined by Eq.(12)
β dimensionless kinetic parameter (Cs/Km)
γ dimensionless concentration (C/Cs)
γ* value ofγ that satisfyR(γ* ) = 0
(γc)lim value ofγ given by Eq.(26)
ε auxiliary parameter given by Eq.(24)
η effectiveness factor
(ηA)max maximum value ofη whenR′(1) < 0 (see Eq.

(28))
λ auxiliary variable defined by Eq.(17b)
ρ auxiliary parameter defined by Eq.(7)
σ auxiliary parameter given by Eq.(11)
φ Thiele modulus given by Eq.(2d)
φ* modified Thiele modulus (φ/ρ)

Subscripts
A refers to approximate values
C refers to value atx= 0
e refers to exact value
L refers to Li et al.[4] definitions
N refers to numerical estimated value
s refers to value atx= 1

a spherical particle. The polynomial coefficients are deter-
mined once the expression is introduced in the resulting dif-
ferential equation and terms of like power are equated. They
[4] also presented a comparison among approximate and nu-
mericalη predictions where is clearly shown thatη behavior
is not as expected and deviations becomes very large as Thiele
modulus increases. A numerical “shooting” procedure is also
mentioned but no details are given in the publication. How-
ever, it is well known that numerical procedure reported in
the literature becomes unstable, unless some spline scheme
is put forward (Villadsen and Michelsen[3]). On the other
hand, plain shooting procedure can become non convergent
when the Thiele modulus is greater than 2, approximately, de-
pending upon the expression used to represent the chemical
kinetics.

The aim of this contribution is to clearly show that an
early procedure developed by Gottifredi and Gonzo[5] can be
safely used to estimateηwith great accuracy. The procedure is
very simple and straightforward.η can be estimated through
a unique algebraic equation and the parameters needed can
be calculated analytically or, with very complex kinetic ex-
pressions, by direct quadrature.

It is further assumed that the enzyme concentration within
the porous catalyst structure is not uniform. Nevertheless, as
will be seen, the procedure is completely general instead of
being restricted to a given kinetic expression and/or pellet ge-
o s,
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metry. In order to compare approximateη estimated value
stable and simple numerical procedure is also shown

nfortunately, is only applicable to slab geometry. Never
ess, in this case, it is quite useful to show the accurac

approximate predictions and also, to test an approxi
lgebraic expression to predict concentration profiles in

he pellet. The effect of diffusional phenomena on kin
ata is also discussed.

. Theory

Let us consider the case of a single independent rea
aking place inside the catalyst porous structure at st
tate and where isothermal conditions prevail. With thes
umptions the mass continuity equation can be writte
imensionless form as:

d

dx

(
xm dγ

dx

)
= φ2xmf (x)R(γ) (1)

herex denotes the spatial coordinate,γ the key componen
oncentration,f(x) the normalized catalytic activity distr
ution function,R(γ) the rate of reaction andφ the Thiele
odulus:

= x′

L
; (2a)

= C

Cs
; (2b)
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R(γ) = r(C)

r(Cs)
(2c)

φ2 = L2r(Cs)

CsD
(2d)

Lbeing the characteristic dimension length of the porous cata-
lyst,C the dimensional concentration,r(C) the rate of reaction
andD the effective diffusivity of the key component within
the porous catalyst. Subindex s denotes the corresponding
value evaluated at the catalyst external surface conditions.
Appropriate boundary conditions are:

γ = 1 x = 1;
dγ

dx
= 0 x = 0 (3)

The effectiveness factor (η) is defined as the mean rate
of reaction divided by the same rate of reaction evaluated at
external conditions:

η = (m + 1)
∫ 1

0
R(γ)f (x)xm dx = m + 1

φ2

[
dγ

dx

]
x=1

(4)

From Eq.(4) it should be noticed thatf(x) must be nor-
malized so that:

(m + 1)
∫ 1

f (x)xm dx = 1 (5)
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R

and

ρ = (m + 1)
√

2f (1)(1+ β)

β
[β − ln(1 + β)](1/2) (9)

On the other hand, whenφ2 � 1 the following asymptotic
solution can be found[5]:

η = 1 − σφ2 + O(φ4) ≈ 1 − σρ2φ∗2 (10)

where:

σ = α R′(1) (11)

R′(1) being the derivative ofR(γ) calculated atγ = 1 and

α = (m + 1)
∫ 1

0
x−m

[∫ x

0
xmf (x) dx

]2

dx (12)

Gottifredi et al.[7] proposed the following expression to
match Eqs.(6) and(10)whenφ2 is very large or very small,
respectively:

η = [φ∗2 + exp(−aφ∗2)]
−(1/2)

(13)

“a” can be found by expanding Eq.(13)whenφ2 � 1 and by
comparing the resulting expression with Eq.(10):

a = 1 − 2σρ2 (14)
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(x) plays a crucial role in supported biocatalysts. Enzym
sually, are very complex molecular charged structures.
o not obey Fick diffusion model and the resulting pelle
embrane, is not uniform regarding enzyme (catalyst)

entration. As a result, catalyst concentration decreases
he surface to the internal zone of the resulting catalystf(x)
s the mathematical description of this phenomena.

. Effectiveness factor estimation

Petersen[6], has shown that whenφ2 � 1 the concentra
ion atx= 0 can be assumed negligible and:

= ρ

φ
= 1

φ∗ (6)

hereρ is given by:

= (m + 1)

[
2f (1)

∫ 1

0
R(γ) dγ

]1/2

(7)

The integral given in Eq.(7) can be usually solved analy
cally for most kinetic expressions used to describe chem
eaction transformations. If not, it can be calculated by
imple numerical procedures.

For the particular case of Michaelis–Menten model:

(γ) = r(C)

r(Cs)
= (1 + β)γ

1 + βγ
with β = Cs

Km
(8)
Eq.(13)needs “a” to be positive. When the calculation h
iven a negative “a” value, it should be taken equal to ze
a= 0) and our Eq.(13) reduces to Churchill and Usagi[8]
roposal. It should also be noticed that whena> 1, η could
e larger than one. Clearlya> 1 means thatR′(1) < 0 which

mplies an apparent negative order of reaction.
Notice that Li et al.[4] introduced a particular definitio

f the dimensionless rate of reaction and Thiele modulu
omparison shows:

2
L = 1 + β

9
φ2 (15)

here the subscript L denotes Li et al.[4] definition for the
pecific case of a Michaelis and Menten kinetic express

. Substrate concentration profile inside the pellet

Gottifredi and Gonzo[9] have shown, that onceη is
nown, the profile inside the pellet can be predicted usin
xpression that match the asymptotic solutions for the pr
t low and high values ofφ. This equation is:

= exp

[ −λ(1 − x2)

{2 − ([1 − xg(x)])/([1 + (2/λ)])}
]

(16)

here

= γ − γ∗

1 − γ∗ (17a)
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λ = φ2η

(m + 1)(1− γ∗)
(17b)

g(x) = 1 − exp(−λx)

1 − exp(−λ)
(17c)

γ* being the dimensionless concentration that satisfies
R(γ* ) = 0

5. Numerical method

Whenm= 0 (slab geometry) and uniform activity distri-
bution, Eq.(1) can be rewritten as:

2

(
dγ

dx

)
d

dx

(
dγ

dx

)
= 2φ2R(γ)

dγ

dx
= d

dx

[(
dγ

dx

)2
]

(18)

which can be integrated once:

dγ

dx
=

(
2φ2

∫ γ

γc

R(γ ′) dγ ′
)1/2

(19)

γc beingγ value atx= 0.
Thus according to Eq.(4):

η

(
2

∫ 1
γc

R(γ ′) dγ ′
)1/2

w f
φ

f∫

S∫

c∫

w ce-
d re
c 25.8
o b-
l

o fix
γ d
p ure
fi

linear algebraic equation routine was used to calculateγc in
each case.

Once the pairφ andγc is determined, concentration profile
can be easily calculated by changing the integration limits of
Eq.(21):∫ γc+ε

γc

(z(γc, γ))−(1/2) dγ +
∫ γA

γc+ε

(z(γc, γ))−(1/2) dγ

=
√

2φx (25)

Thus for a fixed value ofγA, x is straightforwardly cal-
culated and the concentration profile is known by applying
repeatedly this routine. In this case the same criterion given
by Eq.(24) is applied but withγA replacing 1.

6. Results and discussion

6.1. Effectiveness factor predictions

To better show the agreement between approximate (ηA)
and numerical (ηN) (eventually exactηe) values of the ef-
fectiveness factor the produced results will be tabulated. In
some cases the percent deviation (E) is reported in an addi-
t

ate
η ly
g 3%).
T e
k be

T
A r law
k

φ

0 97
0 26
1 79
1 24
2 91
2 05
2 52

n

T
A r law
k

φ

0 64
0 05
0 71
1 17
1 52
2 28
3 44
4 29

n

=
φ

(20)

hich allows the numerical calculation ofη as a function o
, providedγc is known. To find the correspondingγc value

or the givenφ, Eq.(19)can be integrated once again:

1

γc

(∫ γ

γc

R(γ ′) dγ ′
)−(1/2)

dγ =
√

2φ = F (γc) (21)

ince in most cases
γ

γc

R(γ ′) dγ ′ = z(γ, γc) (22)

an be found analytically:

1

γc

(z(γc, γ))−(1/2) dγ =
∫ γc+ε

γc

(z(γc, γ))−(1/2) dγ

+
∫ γc+ε

1
(z(γc, γ))−(1/2) dγ (23)

hich is equivalent to a spline orthogonal collocation pro
ure to carry outη calculations. In facts, both integral we
alculated with six points collocations as given by Table
f Abramowitz and Stegun[10]. The criterion used to esta

ish ε values was:

1 − γc

10
= ε (24)

There are two possible procedures. The first one is t
c value and then findφ that satisfies Eq.(21). The secon
rocedure is to fixφ value and by some numerical proced
nd γc that satisfies Eq.(21). In our case Polymath[11] non
ional column.
Comparison among numerical, exact and approxim
values for the linear case (n= 1) show an extreme

ood agreement (maximum deviations are below 0.
ables 1 and 2presentη values fornth order irreversibl
inetic expression (n= 0.5, 2) in a slab pellet. It should

able 1
pproximate and numerical effectiveness factor values for a powe
inetic

γc ηN ηA

.30 0.955003 0.993956 0.9849

.60 0.825258 0.962836 0.9404

.00 0.561278 0.879014 0.8423

.50 0.241401 0.722708 0.6935

.00 0.055594 0.573554 0.5599

.30 0.011926 0.501717 0.4952

.40 0.003490 0.481155 0.4761

= 0.5, slab geometry.

able 2
pproximate and numerical effectiveness factor values for a powe
inetic

γc ηN ηA

.30 0.956191 0.965146 0.9448

.60 0.848380 0.849162 0.8215

.80 0.765435 0.733347 0.7579

.00 0.685360 0.672346 0.6528

.50 0.519498 0.504733 0.4961

.00 0.401616 0.394804 0.3918

.00 0.247755 0.270088 0.2699

.00 0.137781 0.203857 0.2038

= 2, slab geometry.
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Table 3
Estimated and numerical values of the effectiveness factor forR(γ) = (1+β)γ

(1+βγ)

φ γc ηN ηA E

0.6 0.9410 0.9865 0.9860 0.05
1 0.8414 0.9615 0.9586 0.29
2 0.4755 0.8343 0.8198 1.74
4 0.0659 0.5014 0.4995 0.38
5 0.0234 0.4027 0.4024 0.08
6 0.0084 0.3357 0.3356 0.03

β = 2, slab geometry.

noticed thatφ values cover the asymptotic region for large
values of the Thiele modulus where Eq.(6) produces very
accurateη predictions.

In actual facts Eq.(6) is strictly valid whenγc = 0. How-
ever, tabulated values ofγc clearly show that numerical (ηN)
and approximate (ηA) predictions are very close (less than
1% deviation) even whenγc is far away from being zero.
Moreover, the limiting value ofγc below which Eq.(6) can
be safely used is strongly dependent on reaction order. A very
simple criterion can be established requiring Eq.(6) to predict
η values with maximum deviation below 1%:

(γc)lim ≤ (0.02)(1/n+1) (26)

In all cases investigated, this limiting value was overcome
while showing that the numerical procedure is stable and
accurate although double precision routines were never
used.

Tables 3 and 4show the results obtained with a
Michaelis–Menten kinetic expression (Eq.(8)) with β = 2 and
β = 10 (almost zero order), in a slab pellet. It can be seen that,
again, the agreement betweenηN andηA values is extremely
good in most cases and maximum deviation is around 6% for
large values ofβ (β = 10).

Tables 5 and 6show the particular case of apparent nega-
tive reaction order which can produceη values greater than
o

R

β t be
n

ction
i alue
a

T
E

φ

0 02
1 05
2 71
4 76
4 23
6 79
8 84

β

Table 5
Estimated and exact values of the effectiveness factor forR(γ) = (1+β)2γ

(1+βγ)2

φ γc ηN ηA E

0.141 0.99 1.0023 1.0013 0.10
0.443 0.90 1.0135 1.0086 0.48
0.623 0.80 1.0240 1.0090 1.46
0.877 0.60 1.0340 0.9900 4.25
1.215 0.30 0.9800 0.9150 6.63
1.361 0.20 0.9240 0.8680 6.06
1.660 0.10 0.7870 0.7640 2.92
1.870 0.05 0.7060 0.6940 1.70
2.111 0.02 0.6275 0.6230 0.72

β = 1.5, slab geometry.

(13) it can be shown thatηA is expected to reach a maximum
value:

ηA max = 1 + ln a

a
(28)

when

φ2 = ρ2 ln a

a
(29)

Numerical predictions for smallerβ values (β = 0.5) are
in close agreement with approximate results andη always
decreases asφ increases. However inTables 5 and 6(β = 1.5
and 2, respectively)η first increases and then decreases asφ

increases passing through a maximum value. Although de-
viations among numerical and approximateη values could
be above 10% and the location of the maximum is not well
predicted by simple Eq.(13), ηA values are still acceptable
for engineering purposes. Moreover Eq.(13)clearly show its
capacity to predictη values greater than one.

Li et al. [4] predictions are strictly valid for a spherical
pellet (m= 2). In facts their procedure can only be valid when
φ2 < 1, since, otherwise,γc would become negative. More-
over by revising the algebra it can be shown that all coeffi-
cients of odd power terms of their polynomial vanish. Nev-
ertheless, the overall results would have been similar even
if the correct forth power coefficient of the polynomial had
b

ions
(
d s in
a

T
E

φ

0 5
0 7
0 0
1 12
1 78
2 9
3 4

β

ne. The kinetic expression tested was:

(γ) = (1 + β)2γ

(1 + βγ)2
(27)

values in each table were varied from 1.5 to 2. It mus
oticed thatR′(1) can be negative whenβ > 1.

In these cases, it can be expected that the rate of rea
nside the particle will be greater than its corresponding v
t the surface (R(1) = 1). ProvidedR′(1) < 1, (a> 1) from Eq.

able 4
stimated and numerical values of the effectiveness factor forR(γ) = (1+β)γ

(1+βγ)

γc ηN ηA E

.6 0.9837 0.9991 0.9989 0.
0.9547 0.9972 0.9967 0.
0.8210 0.9876 0.9806 0.
0.3496 0.9211 0.8680 5.

.23 0.2917 0.9046 0.8482 6.
0.0423 0.7124 0.6854 3.
0.0044 0.5373 0.5328 0.

= 10, slab geometry.
een properly deduced.
Table 7presents a comparison between our predict

ηA) and those obtained by applying Li et al.[4] (ηL) proce-
ure for the particular case of Michaelis–Menten kinetic
spherical pellet.

able 6
stimated and numerical values of the effectiveness factor forR(γ) =

(1+β)2γ

(1+βγ)2

γc ηN ηA E

.20 0.979 1.0265 1.0014 2.4

.40 0.914 1.0410 1.0038 3.5

.60 0.802 1.0658 1.0029 5.9

.00 0.427 1.1129 0.9669 13.

.40 0.111 0.9740 0.8690 10.

.00 0.013 0.6968 0.6815 2.1

.00 3.47E-04 0.4647 0.4645 0.0

= 2, slab pellet.
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Table 7
Comparison between the effectiveness factor predictions with our procedure
and that of Li et al.[4]

β = 2
φL 15 20 30
φ* 7.4479 9.9305 14.8957
ηA (this work) 0.1343 0.1007 0.0671
ηL [4] 0.5053 0.5030 0.5014

β = 6
φL 10 20 30
φ* 3.0102 6.0204 9.0306
ηA (this work) 0.3322 0.1661 0.1108
ηL [4] 0.5250 0.5063 0.5027

β = 10
φL 10 20 30
φ* 2.3315 4.6629 6.9944
ηA (this work) 0.4289 0.2144 0.1430
ηL [4] 0.5383 0.5096 0.5043

From these results is clearly seen that Li et al.[4] pro-
cedure is not useful whenφ2 > 1, sinceηL reach a constant
value, around 0.5, almost independently ofφ andβ values.
As known most biocatalyst system operate in range of diffu-
sion control. Under these conditions Li et al.[4] procedure is
not applicable at all.

6.2. Internal pellet concentration profile

Comparison among analytical and approximate concen-
tration profiles given by Eq.(16) for the particular case of
first order reaction show a fair agreement and are not shown
here.

Tables 8 and 9show the values of the dimensionless con-
centration as function of distance from the center of the pellet
for a reaction kinetics given by Eq.(27), for β = 2 and two
values of the Thiele modulus.

Table 8
Concentration profile forR(C) = (1+β)2C

(1+βC)2

x γN γA R(γN)

0.2360 0.46 0.584 1.123
0.3396 0.50 0.609 1.125
0.5341 0.60 0.679 1.1157
0.7949 0.80 0.829 1.065
0.8987 0.90 0.909 1.0332
0 6

β

T
C

x

0 0
0 0
0 0
0 0
0 7
0 1

β

The comparison between approximate and numerical pre-
dictions shows a fair agreement, although the deviation in-
creases asx→ 0 and φ takes larger values. It should be
stressed that in this particular case the apparent reaction
order is negative and the rate of reaction inside the pellet
is larger than the corresponding surface value as shown in
Tables 8 and 9.

6.3. Diffusion phenomena on kinetic data analysis

Let us consider, for simplicity, the effect of diffusion in
catalytic membrane of variable width (2L) assuming that
chemical kinetics is well described by a Michaelis–Menten
expression. A so called Lineweaver-Burk plots is presented
in Fig. 1. The values of the parameters used were:

rmax = 2.10−4 (mol/l s) Km = 2.10−3 (mol/l)

D = 10−6 (cm2/s)

Which are within the order of magnitude of most reported
process.

With our method,ηA is accurate and rapidly calculated
and the value of (1/rexp) is easily simulated for each value
of concentration and width. As can be seen the effect of in-
traparticle diffusion does not modify the expected linear plot
although the slope is substantially affected asφ is increased.
I oes
n nce.
P b-
l tand
t

F mo-
b sport
i

.9467 0.95 0.9504 1.016

= 2,γc = 0.427,φ = 1.0; slab pellet.

able 9
oncentration profile forR(C) = (1+β)2C

(1+βC)2

γN γA R(γN)

.334 0.05 0.208 0.371

.511 0.15 0.298 0.799

.659 0.30 0.417 1.054

.786 0.50 0.569 1.125

.882 0.70 0.729 1.093

.963 0.90 0.905 1.033

= 2,γc = 0.0131,φ = 2.0; slab pellet.
t can be concluded that a linear Lineweaver-Burk plot d
ot preclude the existence of internal diffusion resista
arametric results varyingL are needed to empirically esta

ish the effect of diffusional phenomena. To better unders
he slope behavior shown inFig. 1, η as function ofCs for

ig. 1. Lineweaver-Burk plots for various width of membrane with im
ilized enzyme that obey a Michaelis–Menten kinetic. FTI: free of tran

nfluence.
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Fig. 2. Effectiveness factor as a function of external surface concentration
for different values of the membrane width.

different values ofL is presented inFig. 2. Althoughη varies
significantly withL nevertheless a linear relation betweenη

andCs is established explaining the observations discussed
from Fig. 1. It must be stressed that for this particular case
the resulting limiting value of half thickness (Lmax) is very
small (Lmax< 0.013 mm).

The other possible way to tackle this problem is to estab-
lish a reasonable criterion. The authors[12] assumed that:

|1 − η| ≤ 0.05 (30)

would be a safe limiting condition to neglect diffusional phe-
nomena when kinetic data treatment is needed.

In this particular case Eq.(30) can be rewritten in the
following fashion:

Lmax =
√

0.15(1+ β)CsD

rexp
(31)

whererexp will be the measured value in a given experiment.
Some knowledge is needed to estimateDwhile β must be

assumed and finally checked from experimental data.Fig. 2
is useful to illustrated the application of Eq.(31) in this
case.

7

ffec-
t only
l e at
s ex-
p hose
c sid-
e

have
b ecific

case of slab geometry. Approximate results are always in fair
agreement with corresponding numerical findings for all ki-
netic expressions tested in the whole range ofφ values even
in those cases where the apparent reaction orders is negative
andη > 1. The results are very accurate for the particular case
of the popular Michaelis–Menten kinetic expression. Max-
imum deviations are always less than 7% in this particular
case.

It is also shown the application of this simple algebraic
procedure to estimateη values for other geometrical shapes.
The specific case recently analyzed by Li et al.[4] was revised
showing that could lead to unacceptable predictions for large
φ values.

Another interesting feature is the capability of applying
this simple method when a catalytic activity distribution in-
side the porous resulting structure must be taken into account.
Provided this spatial function is know (i.e. enzyme concen-
tration distribution inside the pellet) it can be easily used to
estimateη values.

The very simple algebraic expression proposed to calcu-
lateη is shown to be able to predictη values higher than one
whenever the derivative of the dimensionless rate of reaction
evaluated at the pellet external surface is negative (which im-
plies an apparent negative reaction order).

An attempt is also presented to predict the concentration
profile inside the catalyst pellet without solving the non linear
s oxi-
m mer-
i ow-
e aches
t -
c ation
p

ions
w en-
z eac-
t ided
t n our
p

e of
d ed in
t erion
i nten
k ver-
B e of
d par-
t

A

sti-
g n-
c
P o.
1

. Conclusions

An approximate method is presented to estimate e
iveness factor for a porous catalytic structure with the
imitation that a single independent reaction takes plac
teady state conditions. It can be used with any kinetic
ression (even for non isothermal system) and also in t
ases where a non uniform catalytic activity must be con
red inside the pellet.

The results produced in terms of effectiveness factor
een tested against numerical accurate results for the sp
econd order boundary value differential equation. Appr
ate concentration profiles are in fair agreement with nu

cal calculations at least in a great region of the particle. H
ver, the fitness is poor as the spatial coordinate appro
he center of the particle and whenφ is very large. More pre
ise calculations are needed to better predict concentr
rofiles.

In this work some general non linear kinetic express
ere tested. It is well known that the true kinetics on
yme catalyzed reaction, taking into account multiple r
ion sites, can be extremely complex. Nevertheless, prov
he reaction system can be described by a single reactio
rocedure is still applicable.

Finally, a criterion is proposed to preclude the existenc
iffusional phenomena when kinetics data analysis is fac

he presence of immobilized enzymes. The proposed crit
s discussed for the particular case of a Michaelis–Me
inetics model. It is clearly shown that a linear Linewea
urk plot is not a safe criterion to neglect the existenc
iffusional parallel controlled phenomena in the catalytic

icle.
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