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Abstract

This contribution deals with effectiveness factg) @nd concentration profile of key component estimations when a single indepen-
dent reaction takes place in a porous catalyst structure where enzymes are immobilized. The procedure is quite general since any ki-
netic expression can be handled and the case of catalytic activity distribution can also be taken into account. With the knowledge of
kinetic parameters and effective diffusivityand concentration profiles can be estimated through very simple algebraic equations. Thus,
the numerical solution of a non linear second order boundary value differential equation, which usually needs some spline scheme, is
avoided.

The obtained approximate results are compared with numerical findings for the case of slab geometry where a very simple numerical
procedure can be used to solve the resulting differential non linear equation. Approximate results are shown very accurate in the whole range
of kinetic parameters, even in those cases where the reaction kinetics shows an apparent negative order of repediniesicein be above
unity. Tables are used to better compare approximate and numerical values. Concentration profile predictions are also very accurate in the
region nearby the external surface of the catalyst particle.

These approximate results are used to establish criteria to analyze experimental kinetic data in those cases where diffusional phenomena
that could affect chemical parameter estimations, must be avoided.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction reactors have been reportdd to test this kind of biological
catalysts.
Mittal [1] pointed out the main advantages of enzyme im-  In recent years, there is an increasing concern to estimate

mobilization in food processing. Usually, these techniques effectiveness factors] in bioengineering processes where
involve adsorption, covalent attachment, cross linking, en- immobilized enzymes are used as catalysts. Since the ki-
trapment and encapsulation. The support structure needs poraetic expression is usually non linear in term of concentra-
size of appropriate dimensions to ensure uniform enzyme tion, numerical procedures are needed to solve the resulting
concentration inside the resulting catalyst and a reasonablegoverning differential equation for the concentration profile
rate of diffusion of substrates and reaction products. When inside the pellets. These procedures are not straightforward
these conditions are not fully met non uniform enzyme con- as shown by Kubicek and Hvalac§k] and Villadsen and
centration within the catalyst results and/or strong diffusional Michelsen[3].
internal limitations with significant overall reaction decays. Recently Li et al[4] presented an approximate procedure
According to engineering purposes a number of experimentalto estimaten when chemical kinetics are well represented
by the Michaelis—Menten equation. They basically assumed
* Corresponding author. Tel.: +54 387 4255400; fax: +54 387 4251006, that substrate concentration can be represented by a polyno-
E-mail addressgottifre@unsa.edu.ar (J.C. Gottifredi). mial up to third degree in the dimensionless positignaf
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Nomenclature

auxiliary parameter defined by E{.4)
auxiliary variable defined by E¢17a)
dimensional key component concentratio
(mol/l)

effective diffusivity of key component (cffs)
percent deviatiof(nn — na)/nn| x 100
normalized spatial catalytic activity function
(see Eq(5))

variable defined by Eq21)

auxiliary variable defined by Eq17c)
Michaelis—Menten dimensional kinetic paran
eter (mol/l)

dimensional characteristic catalyst dimensid
(cm)

geometrical parameter 0, 1, 2

reaction order

rate of reaction (mol/l s)

Michaelis—Menten dimensional kinetic paran
eter (mol/l s)

dimensionless rate of reaction, Egc)

first derivative ofR with respect toy evaluate
aty=1

dimensionless spatial coordinaté/L()
dimensional spatial coordinate (cm)
auxiliary function ofy andy. (Eq. (22))

Greek Letters

auxiliary parameter defined by E@{.2)
dimensionless kinetic paramet&y(Km)
dimensionless concentratio@/Cs)
value ofy that satisfyR(y")=0

value ofy given by Eq.(26)

auxiliary parameter given by E@4)
effectiveness factor

maximum value of; whenR/'(1) <0 (see Eq.
(28))

auxiliary variable defined by E¢17b)
auxiliary parameter defined by E(.)
auxiliary parameter given by E@L1)
Thiele modulus given by Eq2d)
modified Thiele modulus¢(p)

ubscripts

refers to approximate values

refers to value at=0

refers to exact value

refers to Li et al[4] definitions
refers to numerical estimated value
refers to value at=1

>

a spherical particle. The polynomial coefficients are deter-
mined once the expression is introduced in the resulting dif-
ferential equation and terms of like power are equated. They
[4] also presented a comparison among approximate and nu-
mericaln predictions where is clearly shown thabehavior

is not as expected and deviations becomes very large as Thiele
modulus increases. A numerical “shooting” procedure is also
mentioned but no details are given in the publication. How-
ever, it is well known that numerical procedure reported in
the literature becomes unstable, unless some spline scheme
is put forward (Villadsen and MichelsdB]). On the other
hand, plain shooting procedure can become non convergent
when the Thiele modulus is greater than 2, approximately, de-
pending upon the expression used to represent the chemical
kinetics.

The aim of this contribution is to clearly show that an
early procedure developed by Gottifredi and Gofsd@an be
safely used to estimatavith greataccuracy. The procedureis
very simple and straightforwarg.can be estimated through
a unique algebraic equation and the parameters needed can
be calculated analytically or, with very complex kinetic ex-
pressions, by direct quadrature.

Itis further assumed that the enzyme concentration within
the porous catalyst structure is not uniform. Nevertheless, as
will be seen, the procedure is completely general instead of
being restricted to a given kinetic expression and/or pellet ge-
ometry. In order to compare approximatestimated values,

a stable and simple numerical procedure is also shown that,
unfortunately, is only applicable to slab geometry. Neverthe-
less, in this case, it is quite useful to show the accuracy of
n approximate predictions and also, to test an approximate
algebraic expression to predict concentration profiles inside
the pellet. The effect of diffusional phenomena on kinetic
data is also discussed.

2. Theory

Let us consider the case of a single independent reaction
taking place inside the catalyst porous structure at steady
state and where isothermal conditions prevail. With these as-
sumptions the mass continuity equation can be written in
dimensionless form as:

d
— | X
dx
wherex denotes the spatial coordinatethe key component
concentrationf(x) the normalized catalytic activity distri-

bution function,R(y) the rate of reaction and the Thiele
modulus:

d
m—y) — 2 f()RW)

J ®

x= (2a)
r= (2b)
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_r(0)
RO)= 15 (20)

2 LZV(CS)
= CD (2d)
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and

(m + 1DV2FMA+ P)
o= 5 (B

On the other hand, whe#? > 1 the following asymptotic

—In(1+ p)]2) (9)

L being the characteristic dimension length of the porous cata-Solution can be foun{b]:

lyst, Cthe dimensional concentratiaiiC) the rate of reaction
andD the effective diffusivity of the key component within

n=1-0¢?+ 0(¢") ~ 1 — op?¢*? (10)

the porous catalyst. Subindex s denotes the correspondingyhere:

value evaluated at the catalyst external surface conditions.

Appropriate boundary conditions are:

%:o x=0 ©)

1
The effectiveness factor) is defined as the mean rate  « = (m +1) /o x
of reaction divided by the same rate of reaction evaluated at

external conditions:
m+1 |:dyj|
- 4
¢2 dx x=1
From Eq.(4) it should be noticed thd(x) must be nor-
malized so that:

1
n=(m+1) /O R(y) ()" dhx =

1
(m + 1)/0 SE)Mdx =1 (5)

f(xX) plays a crucial role in supported biocatalysts. Enzymes,

oc=aR(1) (11)

R'(1) being the derivative dR(y) calculated ajy =1 and

X 2
I:f xmf(x)dx:| dx
0

Gottifredi et al.[7] proposed the following expression to
match Eqs(6) and(10) wheng? is very large or very small,
respectively:

12)

—(1/2)

n =[6" + exp(-ad*?)] (13)

“a” can be found by expanding E(L3)when¢? > 1 and by

comparing the resulting expression with EfQ):
a=1- 20,02 (14)

Eqg.(13)needs & to be positive. When the calculation has

usually, are very complex molecular charged structures. Theygiven a negatived” value, it should be taken equal to zero

do not obey Fick diffusion model and the resulting pellet, or

membrane, is not uniform regarding enzyme (catalyst) con-

(a=0) and our Eq(13) reduces to Churchill and Usa[§]
proposal. It should also be noticed that wreen1, n could

centration. As a result, catalyst concentration decreases fronpe larger than one. Clearly> 1 means thaR (1) <0 which

the surface to the internal zone of the resulting catafgst.
is the mathematical description of this phenomena.
3. Effectiveness factor estimation

Peterseri6], has shown that wheg? >> 1 the concentra-
tion atx=0 can be assumed negligible and:

P 1
n= 5 = E (6)
wherep is given by:
1 1/2
p=(m+ 1)[21‘(1) | &) dy} @)
0

The integral given in E((.7) can be usually solved analyt-

ically for most kinetic expressions used to describe chemical

reaction transformations. If not, it can be calculated by very
simple numerical procedures.

For the particular case of Michaelis—Menten model:
r(C) 1+ By . Cs
R(y) = = with =— 8
R R N A & ®

implies an apparent negative order of reaction.

Notice that Li et al[4] introduced a particular definition
of the dimensionless rate of reaction and Thiele modulus. A
comparison shows:

1+8 5
g ¢
where the subscript L denotes Li et |] definition for the

specific case of a Michaelis and Menten kinetic expression.

¢ = (15)

4. Substrate concentration profile inside the pellet

Gottifredi and Gonzd9] have shown, that once is
known, the profile inside the pellet can be predicted using an
expression that match the asymptotic solutions for the profile
at low and high values a#. This equation is:

_ (1 —x?)
A= exp[{z Y (—) Yl (2/x)1)}] (16)
where

=
A= 1, (17a)
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¢
= 17b
P mrna- )
_1—exp(=ix)
g(x) = m (17¢c)

y" being the dimensionless concentration that satisfies

R(y)=0

5. Numerical method

Whenm=0 (slab geometry) and uniform activity distri-

bution, Eq.(1) can be rewritten as:
dy dy 2
— 18
[( o) } (18)

(&)

which can be integrated once:

dy d

dv  dx

d

d
3 (&) =2r0)

dx

dy 2 4 ’ / 172
L =2 R(Y)d 19
o ( ) /y ) () dy (19)
yc beingy value atx=0.
Thus according to Eq4):
1/2
(2 5 RO dy/)
= p (20)

which allows the numerical calculation gfas a function of
¢, providedy. is known. To find the corresponding value
for the giveng, Eq.(19) can be integrated once again:

1,y ~(1/2)
/ ( [ R(y’)dy/) dy = v/2p = F(yo) (21)
Yc Yc
Since in most cases

Y
/ RO Y = 2(v. 7o) (22)
Yc

can be found analytically:

1 Ye
(Oe 7)) @2 dy = /

Ye Ye

+e
(ve, ) M dy

* / e )Py (23)
1

which is equivalent to a spline orthogonal collocation proce-
dure to carry ouy) calculations. In facts, both integral were
calculated with six points collocations as given by Table 25.8
of Abramowitz and Stegufi0]. The criterion used to estab-
lish ¢ values was:

1—ye
10
There are two possible procedures. The first one is to fix
yc value and then fing that satisfies E((21). The second

procedure is to fix) value and by some numerical procedure
find y¢ that satisfies E(21). In our case Polymatfi1] non

(24)
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linear algebraic equation routine was used to calcytate
each case.

Once the paip andy is determined, concentration profile
can be easily calculated by changing the integration limits of
Eq.(21).

/Vc+8
Ye

= «/Ed)x

YA
(06 1)) Y2 dy + / (Oe 1)) V2 dy
Vc+8

(25)

Thus for a fixed value ofa, X is straightforwardly cal-
culated and the concentration profile is known by applying
repeatedly this routine. In this case the same criterion given
by Eq.(24)is applied but withya replacing 1.

6. Results and discussion
6.1. Effectiveness factor predictions

To better show the agreement between approximatg (
and numerical fy) (eventually exacke) values of the ef-
fectiveness factor the produced results will be tabulated. In
some cases the percent deviati&) i6 reported in an addi-
tional column.

Comparison among numerical, exact and approximate
n values for the linear casen€1) show an extremely
good agreement (maximum deviations are below 0.3%).
Tables 1 and Zresentn values fornth order irreversible
kinetic expressionn=0.5, 2) in a slab pellet. It should be

Table 1
Approximate and numerical effectiveness factor values for a power law
kinetic

¢ Ve N nA

0.30 0.955003 0.993956 0.984997
0.60 0.825258 0.962836 0.940426
1.00 0.561278 0.879014 0.842379
1.50 0.241401 0.722708 0.693524
2.00 0.055594 0.573554 0.559991
2.30 0.011926 0.501717 0.495205
2.40 0.003490 0.481155 0.476152

n=0.5, slab geometry.

Table 2
Approximate and numerical effectiveness factor values for a power law
kinetic

¢ Ye N nA

0.30 0.956191 0.965146 0.944864
0.60 0.848380 0.849162 0.821505
0.80 0.765435 0.733347 0.757971
1.00 0.685360 0.672346 0.652817
1.50 0.519498 0.504733 0.496152
2.00 0.401616 0.394804 0.391828
3.00 0.247755 0.270088 0.269944
4.00 0.137781 0.203857 0.203829

n=2, slab geometry.
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Table 3

Estimated and numerical values of the effectiveness fact@(for = gﬂfgf)

¢ Ye N 1A E

0.6 0.9410 0.9865 0.9860 0.05
1 0.8414 0.9615 0.9586 0.29
2 0.4755 0.8343 0.8198 1.74
4 0.0659 0.5014 0.4995 0.38
5 0.0234 0.4027 0.4024 0.08
6 0.0084 0.3357 0.3356 0.03
B=2, slab geometry.

noticed thatp values cover the asymptotic region for large
values of the Thiele modulus where H) produces very
accurate; predictions.

In actual facts Eq(6) is strictly valid wheny.=0. How-
ever, tabulated values gt clearly show that numericak()
and approximatenfa) predictions are very close (less than
1% deviation) even whem. is far away from being zero.
Moreover, the limiting value of¢ below which Eq.(6) can

239

Table 5 R
Estimated and exact values of the effectiveness factaRfp)y = 7812)5

¢ Ye N 1A E
0.141 0.99 1.0023 1.0013 0.10
0.443 0.90 1.0135 1.0086 0.48
0.623 0.80 1.0240 1.0090 1.46
0.877 0.60 1.0340 0.9900 4.25
1.215 0.30 0.9800 0.9150 6.63
1.361 0.20 0.9240 0.8680 6.06
1.660 0.10 0.7870 0.7640 2.92
1.870 0.05 0.7060 0.6940 1.70
2.111 0.02 0.6275 0.6230 0.72

B=1.5, slab geometry.

(13)it can be shown thaty is expected to reach a maximum
value:

1+Ina

be safely used is strongly dependent on reaction order. A very

simple criterion can be established requiring jto predict

n values with maximum deviation below 1%:
(¥im < (0.02/"+D) (26)

In all cases investigated, this limiting value was overcome

NAmax = (28)
hen
2
p<ina
9*="— (29)

Numerical predictions for smalle# values $=0.5) are
in close agreement with approximate results analways
decreases asincreases. However ifables 5 and §6=1.5

while showing that the numerical procedure is stable and and 2, respectively) first increases and then decreaseg as
accurate although double precision routines were neverincreases passing through a maximum value. Although de-

used.
Tables 3 and 4show the results obtained with a
Michaelis—Menten kinetic expression (E§)) with g=2 and

viations among numerical and approximatealues could
be above 10% and the location of the maximum is not well
predicted by simple Eq13), na values are still acceptable

B =10 (almost zero order), in a slab pellet. It can be seen that, for engineering purposes. Moreover EtB)clearly show its

again, the agreement betwegpandna values is extremely

good in most cases and maximum deviation is around 6% for

large values of8 (8 =10).

Tables 5 and 8how the particular case of apparent nega-
tive reaction order which can produgevalues greater than
one. The kinetic expression tested was:

A+ By

1+ By)?

B values in each table were varied from 1.5 to 2. It must be
noticed thaR (1) can be negative whef> 1.

R(y) (27)

capacity to predict values greater than one.

Li et al. [4] predictions are strictly valid for a spherical
pellet (m=2). In facts their procedure can only be valid when
¢%<1, since, otherwisey: would become negative. More-
over by revising the algebra it can be shown that all coeffi-
cients of odd power terms of their polynomial vanish. Nev-
ertheless, the overall results would have been similar even
if the correct forth power coefficient of the polynomial had
been properly deduced.

Table 7presents a comparison between our predictions
(na) and those obtained by applying Li et f] (n.) proce-

In these cases, it can be expected that the rate of reactiorflure for the particular case of Michaelis—Menten kinetics in
inside the particle will be greater than its corresponding value a spherical pellet.

at the surfaceR(1) = 1). ProvidedR'(1) <1, @>1) from Eq.

Table 6

Table 4 Estimated and numerical values of the effectiveness factorrR{gr) =

; . . _ @+py a+8)%y
Estimated and numerical values of the effectiveness fact@(fior = Fwm) )2
¢ Ve N na E ¢ Ve N na E
0.6 0.9837 0.9991 0.9989 0.02 0.20 0.979 1.0265 1.0014 2.45
1 0.9547 0.9972 0.9967 0.05 0.40 0.914 1.0410 1.0038 3.57
2 0.8210 0.9876 0.9806 0.71 0.60 0.802 1.0658 1.0029 5.90
4 0.3496 0.9211 0.8680 5.76 1.00 0.427 1.1129 0.9669 13.12
4.23 0.2917 0.9046 0.8482 6.23 1.40 0.111 0.9740 0.8690 10.78
6 0.0423 0.7124 0.6854 3.79 2.00 0.013 0.6968 0.6815 2.19
8 0.0044 0.5373 0.5328 0.84 3.00 3.47E-04 0.4647 0.4645 0.04
B =10, slab geometry. B=2, slab pellet.
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Table 7
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The comparison between approximate and numerical pre-

Comparison between the effectiveness factor predictions with ourproceduredictionS shows a fair agreement although the deviation in-

and that of Li et al[4]

B=2
oL 15 20 30
¢ 7.4479 99305 148957
na (this work) Q01343 01007 00671
n [4] 0.5053 05030 05014
B=6
oL 10 20 30
¢ 3.0102 60204 90306
na (this work) 03322 01661 01108
n [4] 0.5250 05063 05027
=10
oL 10 20 30
¢ 2.3315 46629 69944
na (this work) Q4289 02144 01430
n [4] 0.5383 05096 05043

From these results is clearly seen that Li et[4]. pro-
cedure is not useful wheg? > 1, sincen_ reach a constant
value, around 0.5, almost independentlygoénd 8 values.

As known most biocatalyst system operate in range of diffu-
sion control. Under these conditions Li et[dl] procedure is
not applicable at all.

6.2. Internal pellet concentration profile

Comparison among analytical and approximate concen-

tration profiles given by Eq(16) for the particular case of

creases ax— 0 and ¢ takes larger values. It should be
stressed that in this particular case the apparent reaction
order is negative and the rate of reaction inside the pellet
is larger than the corresponding surface value as shown in
Tables 8 and 9

6.3. Diffusion phenomena on kinetic data analysis

Let us consider, for simplicity, the effect of diffusion in
catalytic membrane of variable width L(p assuming that
chemical kinetics is well described by a Michaelis—Menten
expression. A so called Lineweaver-Burk plots is presented
in Fig. 1. The values of the parameters used were:

rmax = 2.1074(mol/Is)  Km = 2.102 (mol/l)
D = 10"%(cn?/s)

Which are within the order of magnitude of most reported
process.

With our method,na is accurate and rapidly calculated
and the value of (t4yp) is easily simulated for each value
of concentration and width. As can be seen the effect of in-
traparticle diffusion does not modify the expected linear plot
although the slope is substantially affectedas increased.

It can be concluded that a linear Lineweaver-Burk plot does
not preclude the existence of internal diffusion resistance.
Parametric results varyirgare needed to empirically estab-

first order reaction show a fair agreement and are not ShownliSh the effect of diffusional phenomena. To better understand

here.

Tables 8 and 8how the values of the dimensionless con-
centration as function of distance from the center of the pellet
for a reaction kinetics given by E§27), for =2 and two
values of the Thiele modulus.

Table 8 wip?

: ) _ @+p’c
Concentration profile for(C) = (L1407
X YN YA R(yn)
0.2360 0.46 0.584 1.123
0.3396 0.50 0.609 1.125
0.5341 0.60 0.679 1.1157
0.7949 0.80 0.829 1.065
0.8987 0.90 0.909 1.0332
0.9467 0.95 0.9504 1.0166
B=2,y:=0.427,¢=1.0; slab pellet.
Table 9 wap?

: ) _ @+p’c
Concentration profile for(C) = (L1407
X YN VA R(yn)
0.334 0.05 0.208 0.3710
0.511 0.15 0.298 0.7990
0.659 0.30 0.417 1.0540
0.786 0.50 0.569 1.1250
0.882 0.70 0.729 1.0937
0.963 0.90 0.905 1.0331

B=2,y:=0.0131,¢6=2.0; slab pellet.

the slope behavior shown Fg. 1, n as function ofCs for

40 - 3 /L
35
30
g
'5): 25 s L
= /
é 20 X
= X | A
< X
2 15 —X 7/5’ |
10 =
X L=
X =t
el
5
0

0 01 02 03 04 05 06 07 08 09 1 11

{1/Cs).10- 3(limol)

—+— L=0.015mm —&— L=0.02mm
—&—L=0.1mm

—FTl —- L=0.01mm
~4—1=0.03mm —X- L=0.06mm

Fig. 1. Lineweaver-Burk plots for various width of membrane with immo-
bilized enzyme that obey a Michaelis—Menten kinetic. FTI: free of transport
influence.
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1 — Q case of slab geometry. Approximate results are always in fair
0.95 ~Snn *—E ‘f";f_oi;g: ::ﬂé—izg agreement with corresponding numerical findings for all ki-
n %] | | - netic expressions tested in the whole range whlues even
0.8% I —+—T 7T in those cases where the apparent reaction orders is negative
0.8 4
0.75 andn > 1. The results are very accurate for the particular case
0.7 of the popular Michaelis—Menten kinetic expression. Max-
0.65 L —% imum deviations are always less than 7% in this particular
a0 E—— case.
o.:: Lsooae—% It is also shown the application of this simple algebraic
0.45 procedure to estimatgvalues for other geometrical shapes.
0.4 — The specific case recently analyzed by Li ef4lwas revised
0.35 r‘f"f’f showing that could lead to unacceptable predictions for large
03 L - T 1 ¢ values.
0 01 0z 03 04 05 06 07 08 09 1 Another interesting feature is the capability of applying
R T Cs-10%3 (molf) this simple method when a catalytic activity distribution in-

—A-L1=0.03mm _x-L=0.06mm —o—L=0.1mm side the porous resulting structure must be taken into account.
Provided this spatial function is know (i.e. enzyme concen-
Fig. 2. Effectiveness factor as a function of external surface concentration tration distribution inside the pellet) it can be easily used to

for different values of the membrane width. estimatey values.
_ ) o ) The very simple algebraic expression proposed to calcu-
different values of_is presented ifrig. 2. Althoughn varies laten is shown to be able to predigtvalues higher than one

significantly withL nevertheless a linear relation between  \yhenever the derivative of the dimensionless rate of reaction
andCs is established explaining the observations discussedg,a|yated at the pellet external surface is negative (which im-
from Fig. 1 It must be stressed that for this particular case plies an apparent negative reaction order).

the resulting limiting value of half thickneshay) is very An attempt is also presented to predict the concentration
small {max<0.013 mm). _ _ profile inside the catalyst pellet without solving the non linear
~ The other possible way to tackle this problem is to e.stab- second order boundary value differential equation. Approxi-
lish a reasonable criterion. The auth{t&] assumed that: mate concentration profiles are in fair agreement with numer-
11— n| < 0.05 (30) ical calculations at least in a great region of the particle. How-

ever, the fitness is poor as the spatial coordinate approaches
would be a safe limiting condition to neglect diffusional phe- the center of the particle and wheris very large. More pre-

nomena when kinetic data treatment is needed. cise calculations are needed to better predict concentration
In this particular case E(30) can be rewritten in the  profiles.
following fashion: In this work some general non linear kinetic expressions
were tested. It is well known that the true kinetics on en-
0.15(1+ B)CsD zyme catalyzed reaction, taking into account multiple reac-
Lmax= Texp (31) tion sites, can be extremely complex. Nevertheless, provided

the reaction system can be described by a single reaction our
wherereyp Will be the measured value in a given experiment. procedure is still applicable.

Some knowledge is needed to estimatehile 8 must be Finally, a criterion is proposed to preclude the existence of
assumed and finally checked from experimental dai. 2 diffusional phenomenawhen kinetics data analysisis faced in
is useful to illustrated the application of E€B31) in this the presence ofimmobilized enzymes. The proposed criterion
case. is discussed for the particular case of a Michaelis—Menten

kinetics model. It is clearly shown that a linear Lineweaver-
Burk plot is not a safe criterion to neglect the existence of
7. Conclusions diffusional parallel controlled phenomena in the catalytic par-
ticle.
An approximate method is presented to estimate effec-
tiveness factor for a porous catalytic structure with the only
limitation that a single independent reaction takes place at Acknowledgments
steady state conditions. It can be used with any kinetic ex-
pression (even for non isothermal system) and also in those Authors wish to thank Consejo Nacional de Investi-
cases where a non uniform catalytic activity must be consid- gaciones Cieifificas y Tecnicas (CONICET) and Agen-
ered inside the pellet. cia Nacional de Promogn Cientfica y Tecnobgica (AN-
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