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Abstract

The model of steady state diffusion and reaction in a catalyst pellet where a single reaction takes place is analyzed with the scope to predict
effectiveness factor through a very simple and practical procedure. Non-linear usual reaction kinetics are used to investigate the agreement
among exact or numerical predictions with approximate results. In all cases studied maximum deviations in the whole¢raadiseesf
are below 4% which turns the procedure attractive and useful. To perform numerical integration of the classical non-linear diffusion and
reaction differential equation a new procedure was used that avoid usual instabilities or the introduction of spline collocation methods when
concentration profiles are very steep. Concentration resulting profiles are compared with those generated by an early expression proposed by
the authors.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction In this contribution a previous developed perturbation
and matching proceduf2] is applied to obtain effectiveness
Recently, Sun et al[l] presented a new procedure, factor predictions through a very simple resulting algebraic
based on the Adomian decomposition method, to obtain expression which produces results in close agreement
approximate solutions for the non-linear diffusion and (maximum deviation 4%) for the whole range ¢fand
reaction differential mass balance equation in catalyst for kinetic expressions investigated. In addition a new
pellets. The dimensionless concentration profile inside the numerical procedure is used to calculate dimensionless
catalyst, as well as the effectiveness factor, can be calculatecconcentration profiles and effectiveness factor which is very
using this procedure. However, three, and even more (upstraightforward and rapidly convergent.
to six), terms of the Adomian polynomial are necessary to  An approximate expression, developed by Gottifredi et al.
obtain concentration){ or effectiveness factorj values [3], to estimate dimensionless concentration profiles inside
in agreement with numerical or exact prediction. The a catalyst pellet, with the knowledge »pfs also tested with
number of terms depends upon the complexity of the kinetic predictions obtained through the numerical procedure.
expression and on the Thiele modulus value. Nevertheless,
as the Thiele modulugj increases (i.e¢ > 2), n deviations
in relation to exact values become larger than 100%. 2. Theoretical development

It will be assumed that a single reaction is taking place
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Nomenclature

Greek letters

dimensionless key component concentration can be written

Assuming negligible external mass transfer resistance Eq.
(1) must be solved with the following boundary conditions:

a dimensionless parameter given by Etfl) y=1 x=1, d_V =0, x=0 (3)

A dimensionless variable defined by Ef3) dx

C dimensional concentration (kmol#n Under realistic situations E@l) does not have an analyt-

D effective diffusivity of key component (fh) ical solution sincdR(y) is usually a non-linear function of.

f auxiliary function defined by Eq18) Most of the results found in the literature are obtained through

g auxiliary function defined by Eq13) the application of numerical methods that can become unsta-

K dimensionless kinetic parameter used in Eg.  ble wheng? > 1. Fortunately, from a chemical engineering
(22) point of view, one is not interested in solving Ed.) but

L catalyst particle characteristic dimension (m rather in estimating the effectiveness factgr iven by:

m parameter used to define geometrical shape 1

N reaction order - 1 / R()x™dx 4

r dimensional rate of reaction (kmolfh) 7=(m+1) 0 [R()="] @

R dimensionless rate of reaction defined by Ep. By integrating Eq(4) once, with boundary condition given
(2_) ) ) ] by Eq.(3), it can be easily shown that:

X dimensionless coordinate defined by E).

X dimensional coordinate (m)

_m+1/dy
= ¢2 (a)le (5)

Both Egs.(4) and (5) can be used to deduce appropriate

y dimensionless concentration (see &) expressions to predietvalues
e auxiliary parameter defined by E@0) P predia '
n effectiveness factor defined by H¢) . . L
Py auxiliary parameter defined by E€.3) 2.1. Approximate effectiveness factor estimation
Pl aux!l!ary parameter def!ned by E@) Gaottifredi and Gonz¢2] using the perturbation technique
o1 auxiliary parameter defined by E(Y.) h h that f Il val £ depend ¢
¢ Thiele modulus defined by E(R) G D S e esdil depends 0g, up o
. modified Thiele modulus given by E¢B) erm of the ordep= as follows:

_ n~1-01¢”+ 0" (¢* < 1) (6)
Subscripts _
c denotes property calculatedxat 0 with
S denotes property calculatedxat 1 R'(1)

o1 (7

~ (m+1)m +3)

whereR (1) denotes first derivative with respectjtpevalu-
ated aty=1.
For large values od (¢ > 1), assuming that =0 in the

as center of the pellet, the well-known Petergéhand Bischoff
[5] approximate expression is valid:
e () = otre) ®
de \" dx %%zd? @2 > 1) (8)

where the following dimensionless variables were defined:

where the parameten satisfies the following expression:

_C X _y [T 1 12
Y=o T ¢= DCs’ p1=(m4r1)[2/0 R(J/)d)/] 9)
r(C) . . .
R(y) = HCY (2) Gottifredi et al.[3], proposed an algebraic equation to match
s Egs.(6) and (8)
Here C represents the dimensional concentratidrthe ef- —-1/2
P " 1 = (9% + expagd)] Y (10)

fective diffusivity, r(C) the dimensional rate of reaction and
¢ the Thiele modulus, respectivem=0, 1, 2 stands for the By comparing Eqgs(6) and (8)with Eq. (10), the unknown
geometrical shape of the catalyst particle, while subscript ‘s’ parameter 4’ is found to be:

denotes values of the corresponding variables evaluated at )
the outer surface of the pellet. a=1-201p] 11)
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2.2. Dimensionless concentration profile (vc andyc +¢) and the second betweep:(+¢) and 1. Thus
Eqg. (17) can be rewritten in the following fashion:

As will be shown below, the effectiveness factor can Jete
be predicted with Eq(10) with great accuracy. However, (f(ve, v) " Y2dy = / (f(ve, v) Y2 dy
the concentration profile remains unknown. Gottifredi and Ye
Gonzo[6], using once again the perturbation and matching 1
technique, have shown that the concentration profile could be + / (f (e, y))fl/Z dy (19)
predicted by the equation: ¥

cte
(1 x?) which is similar, but more simple, than a spline collocation
A =exp o Toxe() (12) procedure. Both integral were calculated with six points col-
2— 1+2/A locations as given by Table 25.8 of Abramowitz and Stegun

[7] and the criterion used to establishalues was:

where
1-—
_r=v ¢ =5 (20)
1—y*’ (m+1)(1—y*)’ , » _ _ ,
Finally the original second order non-linear differential equa-
1— exp(ax) . . . ) .
glx) = —F—~ " (13) tion was reduced to a unique algebraic non-linear equation
1—exp(-4) with y¢ as unknown ifg is fixed or¢ can be calculated by
" being the dimensionless concentration that satisfies fiXing yc value. In our case/; was determined using the
R(") =0. standard Polymatf8] non-linear algebraic equation routine
which gives excellent results even with an unfair initial guess
Of Yc-
3. Numerical method Once the paig andy is determined, concentration profile
can be easily calculated by changing the integration limits of
Eq.(17).

Whenm=1 (slab geometry) both terms of Hd.) can be

multiplied by 2(d//dx) resulting: Yete B YA B
2 |7 ey s [ G0V
dy\ d /dy 2 d d dy ve vete

2( =) —=—)=2¢"R(y)— = — | | =~ 14

<dx>dx<dx> RN G = @ [\ (14) = 2¢x 1)
By integrating the last two terms using boundary conditions
andy = yc atx=0: Thus for a fixed value of (sayy =ya), X is straightfor-

12 wardly calculated and the concentration profile is known by
% _ <2¢2/ R(Y) dy’) (15) applying repeatedly this routine.
Ye
Thus according to Eq(5): 4. Results and discussion
1 N NL2

n = (2 Jye RO dV) (16) 4.1. Effectiveness factor

B ¢

Since agreement is fairly good, with the scope to better
show differences among predicted (approximated) énd
numerical gN) values of the effectiveness factor for different
cases, all the estimations will be presented in tables instead

which allows the numerical calculation gfas a function of
¢, providedy. is known. To find the corresponding value
for the giveng, Eq.(15) must be integrated once again:

1 Y —-1/2 of figures. Maximum deviation for the particular case of first-
/ </ R(Y)) dJ/) dy = v2¢ = F(yc) 17) order irreversible reactiomé 1) is always smaller than 0.5%
ve \re and Eq.(8) can be safely used wher> 3.
As stated, provided the kinetics is know apdjiven, the Tables 1 and Zhow a comparison amongvalues for
only unknown in Eq(17)is y.. However it should be noticed  the case of a power law kinetic expressi&(y) =", with
that in most cases: n=0.5anch=2. It can be seen that E({.0)is able to predict
% n values in excellent agreement with the corresponding nu-
/ R(Y)dY = f(v ve) (18) merical values for the entire range of Thiele modulus, since
ve in both tables the asymptotic region (where E).is valid)
can be found analytically and that it vanishes wheny.. was reached.

To avoid numerical discontinuities it was found convenient  To extend the spectra of kinetic expressions, the
to divide the interval in two regions. One very closeyto general case of a reaction with Langmuir—Hinshelwood
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Table 1

Approximate and numerical effectiveness factor values for a power law
kinetic

¢ Ye N NA E (%)
0.30 0.955003 0.993956 0.984997 0.90
0.60 0.825258 0.962836 0.940426 2.33
1.00 0.561278 0.879014 0.842379 4.17
1.50 0.241401 0.722708 0.693524 4.04
2.00 0.055594 0.573554 0.559991 2.36
2.30 0.011926 0.501717 0.495205 1.30
2.40 0.003490 0.481155 0.476152 1.04

n=0.5, slab geometry); =1.1547.

Table 2
Approximate and numerical effectiveness factor values for a power law
kinetic

¢ Ye N 1A E (%)
0.30 0.956191 0.965146 0.944864 2.10
0.60 0.848380 0.849162 0.821505 3.26
0.80 0.765435 0.783347 0.757971 3.24
1.00 0.685360 0.672346 0.652817 2.90
1.50 0.519498 0.504733 0.496152 1.70
2.00 0.401616 0.394804 0.391828 0.75
3.00 0.247755 0.270088 0.269944 0.05
4.00 0.137781 0.203857 0.203829 0.01
n=2, slab geometryy; =0.8165.
(Michaelis—Menten—Monod) kinetics of the form:
4

R(y)= ———— 22

M=17%, (22)

is presented inTable 3for K=2. The agreement is very
good. For large values df (K >5), the results are almost
those given by a zero order reaction.

The case of more complex Langmuir—Hinshelwood ki-

netics, leading to apparent negative reaction order, were also

investigated showing thatvalues greater than one are pre-
dicted by our approximate expressi@) as well as by the
numerical procedure. Maximum deviation are always smaller
than 12% in the whole range gfvalues.

4.2. Dimensionless concentration profile

Fig. 1shows dimensionless concentration profiles in a cat-
alyst slab with Thiele modulus as parameter. A power law
kinetic expression is considered wittv0.5. Comparison
between approximate and numerical predictions shows a fair
agreement, although the deviation increases-asO and¢

Table 3
Estimated and numerical values of the effective ness factoR{g) =
v/(1+ Ky), K=2, p1=2.0118

@ Ye N nA E (%)

0.6 0.9410 0.9865 0.9860 0.05
1 0.8414 0.9615 0.9586 0.29
2 0.4755 0.8343 0.8198 1.74
4 0.0659 0.5014 0.4995 0.38
5 0.0234 0.4027 0.4024 0.08
6 0.0084 0.3357 0.3356 0.03
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Fig. 1. Dimensionless concentration profiles inside a slab catalytic pellet.
Power law kineticn=0.5: (A) predicted; (N) numerical results.

takes larger values. Same behavior was observed for other
values of 'h".

5. Conclusions

The semi-analytical procedure, early proposed by Got-
tifredi et al.[3], is shown very simple and practical to predict
very accurate results when compared with exact or numer-
ical findings even for non-linear kinetic expressions. In the
whole range o values the relative error was always smaller
than 4% which is quite acceptable for most engineering pur-
poses. Typical results are presented in tables to better show
this behavior.

In order to compare approximate with numerical results
new approach to predict, both concentration profiles and
effectiveness factor, was presented. With this method there
are no numerical instabilities and there is no need to use
spline collocation techniques. The convergence of numeri-
cal results is straightforward. Unfortunately this procedure
is only fully applicable to slab geometrynE 0). However it

can be applied with minor modifications to non-isothermal
single reaction models.

It should be stressed that the approximatesults gen-
erated with our simple procedure are much better than those
recently presented by Sun et[dl]. Theirn deviations can be
quite large when compared with numerical findings. Error of
100% or even larger are not acceptable to estimaiglues
for chemical reactor design purposes. On the other hand the
algebra involved in their method can become quite cumber-
some to be applicable in chemical engineering practice.

Approximate concentration profile results clearly shown
that Gottifredi and Gonz[6] expression produces very good
estimates in the region nearby the catalytic surface and much
poor estimatesin the central region of the pellet. Nevertheless,
it can be useful in most chemical engineering applications as
was shown by Gottifredi and Fromefi$§.

It should be noticed that this approach can be easily
extended to consider more complex kinetic expressions,

a
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