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Abstract

The model of steady state diffusion and reaction in a catalyst pellet where a single reaction takes place is analyzed with the scope to predict
effectiveness factor through a very simple and practical procedure. Non-linear usual reaction kinetics are used to investigate the agreement
among exact or numerical predictions with approximate results. In all cases studied maximum deviations in the whole range ofφ values
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re below 4% which turns the procedure attractive and useful. To perform numerical integration of the classical non-linear diff
eaction differential equation a new procedure was used that avoid usual instabilities or the introduction of spline collocation meth
oncentration profiles are very steep. Concentration resulting profiles are compared with those generated by an early expression
he authors.
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. Introduction

Recently, Sun et al.[1] presented a new procedure,
ased on the Adomian decomposition method, to obtain
pproximate solutions for the non-linear diffusion and
eaction differential mass balance equation in catalyst
ellets. The dimensionless concentration profile inside the
atalyst, as well as the effectiveness factor, can be calculated
sing this procedure. However, three, and even more (up

o six), terms of the Adomian polynomial are necessary to
btain concentration (γ) or effectiveness factor (η) values

n agreement with numerical or exact prediction. The
umber of terms depends upon the complexity of the kinetic
xpression and on the Thiele modulus value. Nevertheless,
s the Thiele modulus (φ) increases (i.e.,φ ≥ 2),η deviations

n relation to exact values become larger than 100%.

∗ Corresponding author. Tel.: +54 387 4255410; fax: +54 387 4251006.
E-mail address:gottifre@unsa.edu.ar (J.C. Gottifredi).

In this contribution a previous developed perturba
and matching procedure[2] is applied to obtain effectivene
factor predictions through a very simple resulting algeb
expression which produces results in close agree
(maximum deviation 4%) for the whole range ofφ and
for kinetic expressions investigated. In addition a n
numerical procedure is used to calculate dimension
concentration profiles and effectiveness factor which is
straightforward and rapidly convergent.

An approximate expression, developed by Gottifredi e
[3], to estimate dimensionless concentration profiles in
a catalyst pellet, with the knowledge ofη is also tested wit
predictions obtained through the numerical procedure.

2. Theoretical development

It will be assumed that a single reaction is taking p
inside the catalyst pellet of characteristic lengthL and tha
isothermal conditions prevail. The continuity equation for
385-8947/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2005.03.012
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Nomenclature

a dimensionless parameter given by Eq.(11)
A dimensionless variable defined by Eq.(13)
C dimensional concentration (kmol/m3)
D effective diffusivity of key component (m2/h)
f auxiliary function defined by Eq.(18)
g auxiliary function defined by Eq.(13)
K dimensionless kinetic parameter used in Eq.

(22)
L catalyst particle characteristic dimension (m)
m parameter used to define geometrical shape
N reaction order
r dimensional rate of reaction (kmol/m3 h)
R dimensionless rate of reaction defined by Eq.

(2)
x dimensionless coordinate defined by Eq.(2)
x′ dimensional coordinate (m)

Greek letters
γ dimensionless concentration (see Eq.(2))
ε auxiliary parameter defined by Eq.(20)
η effectiveness factor defined by Eq.(4)
λ auxiliary parameter defined by Eq.(13)
ρ1 auxiliary parameter defined by Eq.(9)
σ1 auxiliary parameter defined by Eq.(7)
φ Thiele modulus defined by Eq.(2)
φ* modified Thiele modulus given by Eq.(8)

Subscripts
c denotes property calculated atx= 0
s denotes property calculated atx= 1

dimensionless key component concentration can be written
as

x−m d

dx

(
xm dγ

dx

)
= φ2R(γ) (1)

where the following dimensionless variables were defined:

γ = C

Cs
, x = x′

L
, φ = L

√
rs

DCs
,

R(γ) = r(C)

r(Cs)
(2)

HereC represents the dimensional concentration,D the ef-
fective diffusivity, r(C) the dimensional rate of reaction and
φ the Thiele modulus, respectively.m= 0, 1, 2 stands for the
geometrical shape of the catalyst particle, while subscript ‘s’
denotes values of the corresponding variables evaluated at
the outer surface of the pellet.

Assuming negligible external mass transfer resistance Eq.
(1) must be solved with the following boundary conditions:

γ = 1, x = 1,
dγ

dx
= 0, x = 0 (3)

Under realistic situations Eq.(1) does not have an analyt-
ical solution sinceR(γ) is usually a non-linear function ofγ.
Most of the results found in the literature are obtained through
the application of numerical methods that can become unsta-
ble whenφ2 ≥ 1. Fortunately, from a chemical engineering
point of view, one is not interested in solving Eq.(1) but
rather in estimating the effectiveness factor (η) given by:

η = (m + 1)
∫ 1

0
[R(γ)xm] dx (4)

By integrating Eq.(4)once, with boundary condition given
by Eq.(3), it can be easily shown that:

η = m + 1

φ2

(
dγ

dx

)
x=1

(5)

Both Eqs.(4) and (5), can be used to deduce appropriate
expressions to predictη values.

2.1. Approximate effectiveness factor estimation
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Gottifredi and Gonzo[2] using the perturbation techniq
ave shown that, for small values ofφ, η depends onφ, up to

erm of the orderφ2 as follows:

≈ 1 − σ1φ
2 + O(φ4) (φ2 � 1) (6)

ith

1 = R′(1)

(m + 1)(m + 3)
(7)

hereR′(1) denotes first derivative with respect toγ, evalu-
ted atγ = 1.

For large values ofφ (φ 	 1), assuming thatγ = 0 in the
enter of the pellet, the well-known Petersen[4] and Bischof
5] approximate expression is valid:

≈ ρ1

φ
= 1

φ∗ (φ2 	 1) (8)

here the parameterρ1 satisfies the following expression

1 = (m + 1)

[
2

∫ 1

0
R(γ) dγ

]1/2

(9)

ottifredi et al.[3], proposed an algebraic equation to ma
qs.(6) and (8):

= [φ∗2 + exp(−aφ∗2)]
−1/2

(10)

y comparing Eqs.(6) and (8)with Eq. (10), the unknown
arameter “a” is found to be:

= 1 − 2σ1ρ
2
1 (11)
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2.2. Dimensionless concentration profile

As will be shown below, the effectiveness factor can
be predicted with Eq.(10) with great accuracy. However,
the concentration profile remains unknown. Gottifredi and
Gonzo[6], using once again the perturbation and matching
technique, have shown that the concentration profile could be
predicted by the equation:

A = exp

[
−λ(1 − x2)

2 − 1−xg(x)
1+2/λ

]
(12)

where

A = γ − γ∗

1 − γ∗ , λ = φ2η

(m + 1)(1− γ∗)
,

g(x) = 1 − exp(−λx)

1 − exp(−λ)
(13)

γ* being the dimensionless concentration that satisfies
R(γ* ) = 0.

3. Numerical method

Whenm= 1 (slab geometry) both terms of Eq.(1) can be
m

2

B ions
a

η

w f
φ

f∫

o d
t∫

c
T ient
t

(γc andγc + ε) and the second between (γc + ε) and 1. Thus
Eq.(17)can be rewritten in the following fashion:∫ 1

γc

(f (γc, γ))−1/2 dγ =
∫ γc+ε

γc

(f (γc, γ))−1/2 dγ

+
∫ 1

γc+ε

(f (γc, γ))−1/2 dγ (19)

which is similar, but more simple, than a spline collocation
procedure. Both integral were calculated with six points col-
locations as given by Table 25.8 of Abramowitz and Stegun
[7] and the criterion used to establishε values was:

1 − γc

10
= ε (20)

Finally the original second order non-linear differential equa-
tion was reduced to a unique algebraic non-linear equation
with γc as unknown ifφ is fixed orφ can be calculated by
fixing γc value. In our caseγc was determined using the
standard Polymath[8] non-linear algebraic equation routine
which gives excellent results even with an unfair initial guess
of γc.

Once the pairφ andγc is determined, concentration profile
can be easily calculated by changing the integration limits of
Eq.(17):∫ ∫

w n by
a

4

4
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η nu-
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ultiplied by 2(dγ/dx) resulting:(
dγ

dx

)
d

dx

(
dγ

dx

)
= 2φ2R(γ)

dγ

dx
= d

dx

[(
dγ

dx

)2
]

(14)

y integrating the last two terms using boundary condit
ndγ = γc atx= 0:

dγ

dx
=

(
2φ2

∫ γ

γc

R(γ ′) dγ ′
)1/2

(15)

Thus according to Eq.(5):

=
(
2

∫ 1
γc

R(γ ′) dγ ′
)1/2

φ
(16)

hich allows the numerical calculation ofη as a function o
, providedγc is known. To find the correspondingγc value

or the givenφ, Eq.(15)must be integrated once again:

1

γc

(∫ γ

γc

R(γ ′) dγ ′
)−1/2

dγ =
√

2φ = F (γc) (17)

As stated, provided the kinetics is know andφ given, the
nly unknown in Eq.(17)isγc. However it should be notice

hat in most cases:
γ

γc

R(γ ′) dγ ′ = f (γ, γc) (18)

an be found analytically and that it vanishes whenγ =γc.
o avoid numerical discontinuities it was found conven
o divide the interval in two regions. One very close toγc
γc+ε

γc

(f (γc, γ))−1/2 dγ +
γA

γc+ε

(f (γc, γ))−1/2 dγ

=
√

2φx (21)

Thus for a fixed value ofγ (sayγ =γA), x is straightfor-
ardly calculated and the concentration profile is know
pplying repeatedly this routine.

. Results and discussion

.1. Effectiveness factor

Since agreement is fairly good, with the scope to b
how differences among predicted (approximated) (ηA) and
umerical (ηN) values of the effectiveness factor for differ
ases, all the estimations will be presented in tables in
f figures. Maximum deviation for the particular case of fi
rder irreversible reaction (n= 1) is always smaller than 0.5
nd Eq.(8) can be safely used whenφ > 3.

Tables 1 and 2show a comparison amongη values for
he case of a power law kinetic expression:R(γ) =γn, with
= 0.5 andn= 2. It can be seen that Eq.(10)is able to predic
values in excellent agreement with the corresponding
erical values for the entire range of Thiele modulus, s

n both tables the asymptotic region (where Eq.(8) is valid)
as reached.
To extend the spectra of kinetic expressions,

eneral case of a reaction with Langmuir–Hinshelw
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Table 1
Approximate and numerical effectiveness factor values for a power law
kinetic

φ γc ηN ηA E (%)

0.30 0.955003 0.993956 0.984997 0.90
0.60 0.825258 0.962836 0.940426 2.33
1.00 0.561278 0.879014 0.842379 4.17
1.50 0.241401 0.722708 0.693524 4.04
2.00 0.055594 0.573554 0.559991 2.36
2.30 0.011926 0.501717 0.495205 1.30
2.40 0.003490 0.481155 0.476152 1.04

n= 0.5, slab geometry,ρ1 = 1.1547.

Table 2
Approximate and numerical effectiveness factor values for a power law
kinetic

φ γc ηN ηA E (%)

0.30 0.956191 0.965146 0.944864 2.10
0.60 0.848380 0.849162 0.821505 3.26
0.80 0.765435 0.783347 0.757971 3.24
1.00 0.685360 0.672346 0.652817 2.90
1.50 0.519498 0.504733 0.496152 1.70
2.00 0.401616 0.394804 0.391828 0.75
3.00 0.247755 0.270088 0.269944 0.05
4.00 0.137781 0.203857 0.203829 0.01

n= 2, slab geometry,ρ1 = 0.8165.

(Michaelis–Menten–Monod) kinetics of the form:

R(γ) = γ

1 + Kγ
(22)

is presented inTable 3 for K= 2. The agreement is very
good. For large values ofK (K≥ 5), the results are almost
those given by a zero order reaction.

The case of more complex Langmuir–Hinshelwood ki-
netics, leading to apparent negative reaction order, were also
investigated showing thatη values greater than one are pre-
dicted by our approximate expression(10) as well as by the
numerical procedure. Maximum deviation are always smaller
than 12% in the whole range ofφ values.

4.2. Dimensionless concentration profile

Fig. 1shows dimensionless concentration profiles in a cat-
alyst slab with Thiele modulus as parameter. A power law
kinetic expression is considered withn= 0.5. Comparison
between approximate and numerical predictions shows a fair
agreement, although the deviation increases asx→ 0 andφ

Table 3
Estimated and numerical values of the effective ness factor forR(γ) =
γ/(1 + Kγ), K= 2,ρ1 = 2.0118

φ γc ηN ηA E (%)

0 5
1
2
4
5
6

Fig. 1. Dimensionless concentration profiles inside a slab catalytic pellet.
Power law kinetic,n= 0.5: (A) predicted; (N) numerical results.

takes larger values. Same behavior was observed for other
values of “n”.

5. Conclusions

The semi-analytical procedure, early proposed by Got-
tifredi et al.[3], is shown very simple and practical to predict
very accurateη results when compared with exact or numer-
ical findings even for non-linear kinetic expressions. In the
whole range ofφ values the relative error was always smaller
than 4% which is quite acceptable for most engineering pur-
poses. Typical results are presented in tables to better show
this behavior.

In order to compare approximate with numerical results
a new approach to predict, both concentration profiles and
effectiveness factor, was presented. With this method there
are no numerical instabilities and there is no need to use
spline collocation techniques. The convergence of numeri-
cal results is straightforward. Unfortunately this procedure
is only fully applicable to slab geometry (m= 0). However it
can be applied with minor modifications to non-isothermal
single reaction models.

It should be stressed that the approximateη results gen-
erated with our simple procedure are much better than those
recently presented by Sun et al.[1]. Theirη deviations can be
q r of
1
f d the
a ber-
s .

wn
t od
e much
p less,
i s as
w

asily
e ions,
.6 0.9410 0.9865 0.9860 0.0
0.8414 0.9615 0.9586 0.29
0.4755 0.8343 0.8198 1.74
0.0659 0.5014 0.4995 0.38
0.0234 0.4027 0.4024 0.08
0.0084 0.3357 0.3356 0.03
uite large when compared with numerical findings. Erro
00% or even larger are not acceptable to estimateη values

or chemical reactor design purposes. On the other han
lgebra involved in their method can become quite cum
ome to be applicable in chemical engineering practice

Approximate concentration profile results clearly sho
hat Gottifredi and Gonzo[6] expression produces very go
stimates in the region nearby the catalytic surface and
oor estimates in the central region of the pellet. Neverthe

t can be useful in most chemical engineering application
as shown by Gottifredi and Froment[9].
It should be noticed that this approach can be e

xtended to consider more complex kinetic express
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non-isothermal systems and the effect of external mass and
heat transfer resistances.
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