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Abstract-A previously presented method[l], to predict isothermal effectiveness factor with a single complex 
reaction in isothermal slab pellets is extended to encompass much more complex and general situations. In this 
work the geometry of the pellet can be arbitrary and a non uniform distribution of the catalyst is considered. 

Though the previously presented method[l] has had to be slightly modified to predict with great accuracy the 
effectiveness factor, (with less than 3% deviation from the exact values), an almost general and very simple 
algebraic expression is deduced to predict effectiveness factor values within 10% of their respective exact values. 
Thus for many applications in engineerin desi8n and catalytic reactor simulation, this simple general expression 
can be extremely useful since only one easily generated parameter is needed, as shown throughout the present 
contriiution. 

INTRODUCTION 
In a previous work, the authors[l] have shown that the 
isothermal effectiveness factor in a porous slab could be 
very well predicted by a very simple algebraic equation 
even in the case of complex non-linear kinetic expres- 
sions. This equation was able to satisfactorily match the 
asymptotic expressions of the effectiveness factor (11) 
for small and large values of the Thiele modulus. 

In this contribution, the effect of the geometrical shape 
and the activity distribution of the catalytic pellet is 
investigated. It can be shown that, from a mathematical 
point of view, these two effects are rather similar since 
they can be gathered in a unique term with an ap- 
propriate change of the spatial coordinate. 

Recent studies has shown that impregnated catalyst 
pellets do not present a uniform distribution of the active 
species. Chen and Anderson[2] investigated the concen- 
tration profiles of chromium and copper salts after being 
impregnated in y-alumina spherical pellets. It was con- 
cluded that due to complic&d mechanisms in the drying 
step the solute redistributes and rather steep concen- 
tration profiles of the active species can result. 

Impurities in chemical feedstocks can also cause cata- 
lyst deactivation. McArthur[3] found that sulfur and lead 
concentrations in automotive catalysts decrease hiper- 
bolically towards the particle center. Hegedus and 
BaronE and Su and Weaver IS] found a similar pore 
mouth poisoning behaviour of lead in noble metal and 
base metal oxide catalysts. Sato ef a/.[61 showed that 
vanadium compounds deposited preferentially on the 
outside of cobalt-molybdenum catalysts while nickel 
salts penetrate the entire particle. 
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The question that arises is whether it might be possible 
to calculate the effectiveness factor under these con- 
ditions in a quick approximate analytical way in order to 
optimize the performance of the catalyst pellet, and also 
to establish the type of catalyst deactivation mechanism 
prevailing in a given process. Becker and Wei[7] had to 
solve numerically the resulting differential equation even 
for the case of first order reactions when an exponential 
decaying activity from the catalyst surface was con- 
sidered. Nystriim[8] proposed an infinite series as solu- 
tion of the concentration profile of a reacting species 
provided the kinetic expression is a linear function of the 
concentration, this being a very strong limitation for 
most catalytic reactions. 

The purpose of this work is to investigate the 
behaviour of the proposed analytical equation previously 
presented[ll to match asymptotic expressions for the 
effectiveness factor valid for small and large values of 
the Thiele modulus. The effect of the geometrical shape 
of the catalyst is also investigated by assuming that 
unidirectional diffusion flow occurs in slab, cylindrical, 
or spherical pellets. Nevertheless, it becomes clear that 
the method can be used even in those cases where 
bidimensional diffusion flow takes place. 

Once again it is assumed that no convective flow due 
to a pressure is present, that the diffusivity coefficient is 
constant, that isothermal and steady state conditions 
prevail. In this analysis a single reaction of order m is 
assumed with the condition that m B 0.5. Negative orders 
cannot be analyzed with the present method as it was 
explained previously [ I]. Nevertheless, more complex 
kinetic expressions can be studied under the same pro- 
cedure thus rendering it as almost general to predict 
effectiveness factor values when the activity distribution 
is known, or it is deduced under theoretical con- 
siderations, and the geometrical shape of the catalyst is 
fixed. 
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The analysis follows a pattern similar to that presented 
in the first contribution[l]. After deriving asymptotic 
expressions of the effectiveness factor valid for small 
and large values of the Thiele modulus they are matched 
with a proposed equation. However, in this case it is 
shown that the previously presented simple algebraic 
equation (1) is’ not able to match asymptotic solutions, 
and extra terms are needed. Nevertheless, it is shown 
that an extremely simple equation can be used to esti- 
mate the effectiveness factor with maximum deviations 
of 10% which, for certain engineering applications, 
proves satisfactory. In any case a procedure to find much 
more accurate estimates of the effectiveness factor is 
presented. The external mass transfer resistance effect is 
not considered in this contribution but it can be very 
easily taken into account as was previously shown[ll. 

ANALYSIS 

Considering the above stated assumptions, the diReren- 
tial mass balance for species A, that diffuses and reacts 
according to an mth order irreversible kinetic reaction, can 
be written in the following dimensionless form: 

(1) 

where 

C, = &&A,); r = (J/R) 

h2 = (k;C$“-” R’/DA). (Ww) 

R being the dimensional characteristic length of the 
pellet, CL, the dimensional concentration at the surface, 
r’ the spatial coordinate parallel to the diffusional flow 
direction, DA the effective diffusivity coefficient and /c, 
the specific rate of reaction per unit volume of the pellet. 
The effect of the geometrical shape in eqn (1) is seen 
through n (0 slab, 1 cylindrical, 2 spherical geometry) 
and the activity distribution function by j(r). According to 
theeffectivenessfactordefinitionj(r)shouldbenormalized 
in such away that T+ 1 when h2+0. Thus, j(r)canheany 
function that fits the following condition: 

’ (n t l)f(r)r” dr = I. (3) 

The appropriate boundary conditions for eqn (I) are: 

c, = 1 r=l 

!A&=() 
dr r=O (40) 

which implies that a symmetrical plane exists. 
Asymptotic solutions can now be very easily found 

when h’+O. Equation (1) suggests itself the following 
series solution: 

C,, = Ao(r)+ h*A,(r)+ h4A2(r)+ * . . (5) 

of like power of h have been equated it gives the 
following uncoupled system: 

d2A,, ndA, F+;dr=O 

d*A, ndA, 
=+7x = j(r)&” 

$+Fd$ = mj(r)Aom-‘A, 

@a,b,c) 

subject to the following conditions: 

A,,(l) = 1 A,(l) = AZ(l) = 9 

dAz d-4 _ dAz _ o -=-_-_ 
dr dr dr r=O G&b) 

A, = I is the solution to eqn @a). The other equations 
can be solved by standard procedures once n and j(r) 
are chosen. According to the effectiveness factor 
definition eqn (5), with A0 = 1, wilt produce the following 
results: 

1)=1th*p,th’/32t*~. (8) 

where condition (3) was used and: 

8, =l mA,(n t I)j(r)P dr (9) 

&=I.‘( m&+k(m-l)mA,* (n+l)j(r)r”dr 
> 

A,‘(n t I)j(r) r” dr. (10) 

On the other hand, when h’-+m, it is convenient to 
introduce the coordinate transformation suggested by 
Petersen [9]. Thus with: 

x = h(1 - r). (11) 

Equation (1) can be rewritten in the following form: 

d=C, 
w- 

A series solution in terms of h-’ is now possible after 
expnding the activity distribution function as: 

j~~-%)=j(1)-‘(~1._,)~)-.... (13) 

Clearly, j(1) is the value of f at the surface and 
(dj/dr),-r also denotes surface value. Now, we can 
assume the following series solution for C, when h +m 

which after being replaced in eqn (1) and after the terms 
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By replacing eqn (14) in eqn (12) and gathering terms of 
like power of h it results that: 

$$ = f(l)rpo” (15) 

C&=f(l)m& 

(16) 

subject to the following boundary conditions: 

A$+=~ x = h. Wab) 

However, after invoking the usual assumptions (g,,@) = 
0) the solution to eqn (15) is easily found and need not to 
be rewritten here. Unfortunately, the same cannot be 
said of eqn (16). As it is shown in the Appendix, we only 
found an exact analytical solution to the case of m = 1. 
Nevertheless, a solution can be found after introducing 
crude approximations into the right hand side of eqn (16). 
From eqn (14) it becomes clear that 11 will be now given 
by the following asymptotic expression: 

T=a(;)+d($)+... (18) 

where 

At this point, since values of a and ,!I, can be easily 
calculated, we can introduce the previously proposed 
matching expression for n (see Ref. [l]): 

2 112 

9=dg+ 

Once again it can shown that a, r and S are related to 
(r and PI through the following equations: 

a-a 

r = (s/a)2 (2lahc) 

However, in many cases it could happen that 
(2a2&( > 1 and S becomes imaginary thus rendering 
inconsistent the proposed matching expression. There are 
two ways to overcome this problem. The first one is the 
simplest though precision is lost. It is assumed that the 
second expansion term for ~7 when h2+0 is S,,,& instead 
of )9, in such a way that: 

-Z&,/3, = 1. (22) 
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Using eqn (22) it can be shown that an extremely simple 
expression results instead of eqn (20): 

TI = (1 t (h/a)z)-“2 = Tj (23) 

which can be compared with the numerical results of ~7. 
The ability of eqn (23) to fit true values of n over the 
entire range of Thiele modulus values will be discussed 
later though it can be anticipated that it proves fairly 
good for most engineering purposes. 

The second way to overcome the problem, when 
j2a2Blj> 1 is to use extra terms as matching equation. 
Thus, instead of eqn (20) the following is proposed: 

(24) 

After expanding eqn (24) when h +m and by compar- 
ing the resulting series with eqn (18) it is shown that: 

u=a 

n, =d. (25aM 

On the other hand, by repeating the expansion pro- 
cedure with eqn (24) when h’+O and by comparing it 
with eqn (8) the following relations result: 

1 - 
- ar “‘Smi t ar”2S-2 + nlppz = ,!I1 2 (26a,b,c) 

lar”2S-3 -5 r-‘12S-1 _a r-li2s-2- 2n,p-’ = /#j2. 
8 2 

Since a and n are given by eqn (25a,b) a system of 
three non linear algebraic equations with three unknowns 
must be solved for r, S and p. After some manipulations 
this system can be reduced to the following form: 

[(l-&$&-cap-~ [B’t(l-&)/Yq 
(27) 

where the auxiliary parameter y was introduced as: 

S=ya’. ‘ 

Once y is found, by a trial and error procedure, by 
satisfying eqn (27) p can be found through: 

i 
2nlaz 

I 

112 

IJ= 2&a’-[(y-‘-1)2-1] . 0% 

Finally, by combining eqns (28) and (26a) the value of r 
is found as: 

r = +a2 (38) 

As a general rule, the procedure, at least in those 
cases investigated, gives values of y encompassed be- 
tween 0.90 and 2.8 approximately. This short range will 
speed up the trial and error procedure to find y. 
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In terms of (h/a)z the resulting expression for 7 can be 
rewritten in the following form: 

(yZ+ (h/n)“)“” 
v= (yt(h/a)Z) + 3 ( > (h/a )’ 

Wn2) + (h/a)2F (3’) 
DISCUSSION OF WSULTS 

In Table 1, the numerical results of the effectiveness 
factor as a function of the Thiele modulus when m = 0.5, 
1.0 and 2.0 are presented. These results are for spherical 
geometry and f(r) = 1 (that is uniform activity dis- 
tribution). When m 3 1, &,, (see eqn 22) is less than one 
so that eqn (24) should be used to calculate 7. Neverthe- 
less, values of f given by eqn (23) ace also presented in 
Table 1 for comparison purposes. 

The results obtained after integrating eqn (1) numerically 
when m # 1, are also shown in those columns headed by 
q,+ Values of &, j3*. a2, n, p and y are also given when 
necessary. It can be seen that eqn (34) produces results 
in close agreement with the corresponding numerical 
values. On the other hand, eqn (23) also produces results 
which for many engineering design puposes, are accurate 
enough with the advantage that only parameter, u, needs 
to be analytically estimated. Maximum deviations when 
using this expression is about 10% while it is reduced to 
about 3% when eqn (31) is used. 

The results obtained for slab geometry, when m = 1 
and 2; and 3 different activity distribution functions, are 
presented in Table 2. Tested functions are: 

I 2(r-b) 
(Linear) f(r) = ( (1- ra b 

I 0 Orrsb 

(Parabolic) f(r) = 3P (33) 

(Exponential) f(r) = 4 exp (4(r- 1))1(1- exp (- 4)). 
(34) 

All of them suggested by Kehoe[lOl from experimen- 
tal evidences reported in the literature. The only cases in 
which there was need to use the whole eqn (31) to 
estimate v accurately were parabolic and exponential 
distributions when m = 2. In these cases values of the six 
resulting parameters are reported as well as those values 
of + given by the simple expression (23). Once again it is 
shown that the approximate values of q(v_.,) are in close 
agreement with the corresponding values obtained by 
numerical integration (qN). Maximum deviations are 
below 3%. However, it seems that for slab geometry, and 
with those distribution activity functions, the simple 
expression (23) gives very good estimates of q since the 
maximum deviation is only about 6%. 

Incidentally, it can be shown that the governing mass 
balance differential equation for species A in a slab pellet 
with an exponential activity distribution function (see 
eqn 34) can be easily transformed into the corresponding 
mass balance with radial d8usion in an infinite long 
cylindrical pellet with uniform distribution. Thus, the 
results given in Table 2 for exponential distribution 
representatestof onrapproximateexpressionincylindrical 
peHets with uniform catalyst activity. 

Finally, in Table 3, the results obtained in spherical 
pellets, with linear (f(r) = (4/3)r) and parabolic (f(r) = 
(5/3)?) activity distribution functions, are presented 
when m = I and 2. Values of the effectiveness factor, 
obtained by numerical integration of the corresponding 
differential equation, (qN), are compared with those 
given by eqn (31) and with those calculated with the 
simple eqn (23) (f). Once again it is shown that the 
maximum deviation between approximate and numerical 
values of q is about 3% while in these cases eqn (23) also 

Table I. 

3.3 0.7837 0.7617 9.7559 0.6714 0.6721 (1.7071 0.5870 0.5710 0.6324 

4.0 0.6830 0.6470 0.6547 0.5625 0.5661 9.6000 0.4883 0.4693 0.5223 

6.0 0.5208 0.4809 9.5000 0.4156 ?.4170 0.4472 0.3569 0.3464 0.3780 

/iI - -0.06667; b = 0.03635 /i =-0.13333; P2 = 0.03175 

a2 - 9;?j= 1.772 : 6, 0.833 a2 6:X- 2.36; grn =0.625 = 

"1 --3:~ = 11.769 n z- 2.4 ; p = 5.559 1 
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Table 2. 

Table 3. 

LIhEAR PARAEOLIC 

m 1 2 1 2 

h 
\ '1A TN ?, ?A ?N 7 ?A %I 5 ?A 413 )z 

1.5 0.9cl70 0.9077 0.9177 0.8432 0.8410 0.8836 0.9253 0.9258 0.9326 0.8704 (1.6691 0.9050 

I 2.0 I o.e493 0.8494 0.8662 9.7680 1.7636 0.8165 0.8770 0.8775 0.8885 0.8025 0.8006 0.8461 1 

1 3.0 j 0.,297 0.7300 0.7559 j 0.6391 0.6277 0.6859 IO.7708 0.7709 0.7904 [ 0.6795 0.6710 0.7254 1 

I I 6.0 0.4699 0.4709 0.5004 0.4020 0.3905 0.4266 0.5144 0.5154 0.5**1 0.4399 0.4295 0.4657 

I 6.0 1 0.3724 0.3737 0.3973 IO.3155 0.3111 0.3332 0.4106 0.4124 0.4367 0.3482 0.3463 0.36'16 

a;-0.04762: ,$=a-003175 &=-0,09524: p2e.01588 (31=-0,037:)92=1.8Y9r10-3 &=-0,074:/32-9.495 x lO+ 

._2 = l2;6=1.716> h~O,675 a*=S;v= 2.392 6~0,656 a'=l5;6=1.762 ;dm0,901 a2=lr): h.426:. &0,676 

T =-3.75: pi 16.524 ,,I -- 3.3 , ,z= 7.824 y-4.5; p ~21.319 3~ - 4.2 ; pGtO.09 

produces reasonable estimates of 7 for engineering pur- 
poses. 

As a general rule. when 6, > 1, there is no need to use 
eqn (31) instead of eqn (20) to estimate 7’s values, unless 
extremely accurate predictions are necessary. 

CONCLUSIONS 

A method which can be safely used to calculate the 
isothermal effectiveness factor in pellets of arbitrary 
geometry with non linear expressions and with the 

effect of non-uniform activity distribution func- 
tion is presented in this contribution. The obtained 
results have shown a fairly good agreement between the 
numerical, almost exact, and approximate values of the 
effectiveness factor. Maximum deviations are of about 
3%. 

At the same time it is shown that for many engineering 
applications a surprisingly simple expression (see eqn 23) 
can be used to estimate the effectiveness factor with a 
maximum deviation from the true values of about 10%. 
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Apart from being a simple one, a unique parameter is 
needed which can be easily obtained in an analytical way 
from the well known asymptotic expression of 7 when 
h +m. Equation (23) has the character of an almost 
universal expression of p when 1 > q > 0. This case 
encompasses almost every situation arising in chemical 
engineering practice rendering eqn (23) in a powerful tool 
for design purposes and even for kinetic parameters 
estimation in real chemical reactors. 

Though a number of assumptions were introduced, it 
should be stressed that the method can be easily exten- 
ded to the analysis of more complex situations and even 
to estimate the performance of gas solid non-catalitic 
reactions. Except from those cases where non-isother- 
mal, with exothermic reactions, and negative order 
kinetic expressions are considered, the method of 
matching can give extremely good results since the 
asymptotic expressions of TJ will always have the same 
forms as those presented above. Perhaps, this might be 
the greatest achievement of this contribution. 

AcknowMgement-The authors are grateful to Consejo 
National de Investigaciones Cientificas y Tdcnicas (Argentina) 
for partly financing this work. 

u dimensionless parameter given by (21a) or 
@a) 

Ao,A,,Az auxiliary expansion function satisfying eqns 
(6a,b,c) 

6 

C.4 
CX 

d 

z 

dimensionless parameter defining linear 
activity distribution function (see eqn (32)) 

dimensionless concentration of species A 
dimensional concentration of species A 
parameter defined by eqn (19b) 
effective diffusity coefiicient for species A 
activity distribution function inside the 

pellet 

: 
h 

k, 
m 
Ii 

n1 
P 
4 

auxiliary parameter given by eqn (A13) 
auxiliary function defined by eqn (A4) 
Thiele modulus (see eqn 2c) 
specific rate of reaction per unit volume 
order of reaction for species A 
geometrical parameter 
dimensionless parameter given by (25b) 
dimensionless parameter given by eqn (29) 
auxiliary parameter used in the Appendix 

given by eqn (Al 3) 

R’ 
S 
W 

x 

dimensionless spatial coordinate 
characteristic length 
dimensionless parameter given by eqn (28) 
auxiliary variable defined by eqn (A12) 
spatial coordinate in slab geometry 

NOTATION 

Greek symbols 
a 

819 82 

9,’ 
1) 

dimensionless parameter defined by eqn 
(19a) 

dimensionless parameter given by eqns (9) 
and (10) 

auxiliary variable solution to eqn (27) 
auxiliary parameter given through eqn (22) 
effectiveness factor 

t 
f 

(PO> cpl 

X 

Subindex 
S 

approximate value of q given by eqn (23) 
auxiliary variable defined by eqn (A 10) 
auxiliary expansion variables satisfying eqns 

(15) and (16) 
auxiliary space variable defined by eqn (11) 

refers to surface value 
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APPEmlx 
Here we are concerned with the approximate solution to the 

following ordinary differential equation: 

cp0 being the solution to eqn (IS) so: 

[exp (-f(tYx) m=l 

Equation (Al) is subject to the following boundary conditions: 

cpl(O) = IpI@) = cl. 643) 

When m = I an exact analytical solution can be found under the 
form: 

CPI = GCU) exp (- f(l)‘?~) (A4) 

which after being replaced in (Al) with the corresponding func- 
tion for rpo when m = I gives: 

is the solution to eqn (As). and conditions (A3) are satisfied. 
Finally: 

-9l,_,=-~[n+(~1,_,)~]. (A7) 

In the case where m# 1 we have to solve eqn (Al) with:: 

%= - (s)“** exp (v). (ML) 
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The task seems formidable. However, since the solution to the Clearly (AS) fits boundary conditions (A3) provided 1 <m < 3, 
homogeneous parts of (Al) is cp~ = 0, we only need a particular but this is just the range of m’s values we need to cover. From 
solution to (Al). Here the following expression will be proposed: (A9): , 

where 

_!k! 
dx X.-o=-w (A14) 

and it can be seen that q reduces itself to expression (A7) when 
m = 1. Thus LW 

By replacing (A9) into (Al) it is found: 

(A13) 

(I = (n t l)($y’ (Al5) 

d=,,,=- 

(A161 

are the valid expressions used to estimate the effectiveness 
factor’s tabulated values of this work. 


