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Abstract

A recently developed technique to estimate effectiveness factor in catalytic pellets [J.C. Gottifredi, E.E. Gonzo, On the effectiveness factor
calculation for a reaction-diffusion process in an immobilized biocatalyst pellet, Biochem. Eng. J. 24 (2005) 235–242] is used to greatly simplify
the simulation of membrane biocatalyst reactors. The whole problem is reduced to well-known plug flow packed bed reactor after an appropriate
definition of an effectiveness factor (η) that takes into account chemical consumption in the catalytic region and mass transfer resistances of the
reactive component. A standard R–K routine can then be applied since, at each mesh point, η is calculated through a non-linear algebraic equation.

Results produced with this procedure compare fairly well with previous findings. Moreover some experimental results of kinetics studies related
with enzyme immobilization are used to simulate membrane hollow fiber reactors and conversion, concentrations and η profiles along reactor axial
position.

The procedure can be applied to any biocatalytic system provided a single chemical reaction takes place although the kinetic expression can be
arbitrary.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

An increasing interest related to the use of purified enzymes
as biocatalysts in laboratory and industrial scale is being devel-
oped as a new group of technologies suitable to fill the growing
needs of more safe chemical processes [1–4]. Since 1971,
when Rony [5,6], suggested “immobilizing” enzyme within the
spongy matrix of hollow fiber membranes, several techniques to
immobilize the enzyme in the hollow fiber, as well as, suitable
reactor were presented [3,7,8].

Asymmetric hollow fiber membranes provide a suitable sup-
port for enzyme immobilization. These reactors are usually
conformed by a bundle of tubes. The spongy matrix structure,
where enzymes are supported, is confined between tube imper-
meable walls and a very thin skin – around 5 �m thick – of dense
polymer or porous ceramic which allows reactive and products
mass transfer but being impermeable to enzyme large molecules.

∗ Corresponding author.
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The resulting reaction region where conversion takes place by
catalytic action is usually 70 �m thick. Thus chemicals must
diffuse from the stream flow to the reaction zone and products
back to the stream trough the dense polymer or ceramic barrier.
As a consequence several mass transfer series resistances must
be considered with simultaneous chemical reaction to simulate
reactor behavior.

In this type of reactors, although conversion increases along
the axial position under steady-state conditions, the reaction only
takes place in the spongy region causing a concentration radial
gradient of the key reactive component that must be balanced
by the diffuse radial flux at the wall of the lumen region. As a
consequence the simulation of reactor behavior requires, at each
axial position, the estimation of the key component consumption
in the spongy region. Thus a non-linear second order differen-
tial equation defined by boundary values must be solved at each
axial position of the reactor. This is not an easy task even with
modern numerical techniques specifically when steep concentra-
tion profiles arise due to fast specific reaction rates. Moreover
since the actual lumen concentration at the end of each step
must be estimated the resulting non-linear differential equation
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Nomenclature

a distance from center tube to lumen–membrane
interface (Fig. 1) (m)

b distance from center tube to spongy
region–membrane interface (Fig. 1) (m)

B parameter defined by Eq. (4) (mol/m s)
C concentration (mol/m3)
C0 mixed cup concentration in the lumen (mol/m3)
C* dimensionless concentration defined by Eq. (11b)
d tube radius (Fig. 1) (m)
Def effective diffusivity (m2/s)
Fo key component entrance molar feed rate (mol/s)
K partition coefficient
kL liquid phase mass transfer coefficient (m/s)
Km Michaelis–Menten kinetic parameter (Eq. (22))

(mol/m3)
L reactor length (m)
P dimensionless parameter defined by Eq. (17)
r radial coordinate (m)
R intrinsic reaction rate (mol/m3 s)
R* dimensionless rate of reaction (see Eq. (11))
RV spongy region to total reactor volume ratio
Vm maximum rate of Michaelis–Menten equation

(see Eq. (22)) (mol/m3 s)
x reactor radial coordinate (m)
X key component reaction conversion
z reactor axial coordinate (m)

Greek letters
α parameter given by (b/d)
δ parameter defined by Eq. (19)
η effectiveness factor defined by Eq. (13)
φ Thiele modulus defined by Eq. (12)
φ* modified Thiele modulus defined by Eq. (17)
ρ parameter defined by Eq. (18)
σ parameter defined by Eq. (19)
Ω bioreactor total cross section (m2)

Subscripts
a denotes concentration at r = a
am denotes concentration in equilibrium at r = a
b denotes concentration at r = b
bm denotes concentration in equilibrium at r = b
m denotes diffusivity in the skin membrane

Superscript
0 denotes concentration at reactor entrance (z = 0)

must be solved more than once at each point grid of the axial
position.

A number of attempts have been reported in the literatures
[9–14] to find a close solution of the resulting design equations.
However, the intrinsic nonlinearity of the governing mass bal-
ance differential equation for the key species in the system does
not permit an analytical solution. Therefore a numerical method

must be applied to solve the system, which cannot be easily
applied, especially for the effectiveness factor calculation in the
spongy biocatalyst region where the reaction rate takes place.

Waterland et al. [13] obtained the exact analytical expres-
sion for substrate concentration profile through an idealized fiber
assuming first order biocatalytic kinetic reaction. The resulting
expression, however, is not suitable for straightforward calcula-
tions; therefore a numerical technique, based on finite difference,
has also been used in their contribution to account for non-linear
kinetic expressions. Kim and Cooney [21] presented a close solu-
tion strictly valid when the reaction kinetics is well described
by a first order irreversible expression. In the last years several
contributions have been presented among which Jayaraman and
Kulkarni [11] can be cited. After defining an effectiveness factor
based on lumen concentration at the wall, the authors solved the
problem as a linear Graetz model but where one of the boundary
condition (at the wall) is function of reactor position. Thus a
Volterra type integro differential equation was generated by the
superposition principle which was solved numerically step by
step along the reactor. However, in each step the flux at the wall
due to reaction must be evaluated which requires the numeri-
cal solution of the diffusion reaction differential equation. More
recently, Cabrera et al. [9] used Green’s functions to obtain the
general solution of the mass balance differential equations. The
derived integral equations had to be numerically solved on an
approximately transformed coordinate system. Uniform rect-
angular grids on the original coordinate system were used to
solve the equations. Sousa and Mendes [12] presented a new
numerical scheme using orthogonal collocation together with an
independent variable transformation (spatial coordinate) to solve
the model equations associated with catalytic membrane reac-
tors. The new scheme is claimed to avoid the imprecise results
obtained when traditional numerical methods such as finite dif-
ferences with equispaced intervals or orthogonal collocation are
used.

The purpose of this contribution is to show that a previous
procedure recently presented by the authors [15], is a power-
ful and appropriate tool to overcome all numerical problems
associated with instabilities and stiffness of the non-linear dif-
fusion reaction differential equation. Instead a truly algebraic
approach is used at each point of the axial coordinate of a
plug flow steady-state reactor to simulate the performance of
an actual biocatalytic reactor as shown below. Numerical con-
version values are compared with previous findings showing
excellent agreement. Finally the reactor performances of real
systems, with potential industrial interest, are simulated to show
reactor behavior through concentration profiles in each region
and the resulting effectiveness factor evolution along the axial
coordinate.

2. Hollow fiber bioreactor model

A conventional hollow fiber bioreactor is considered in this
analysis. A schematic representation of the reactor is shown
in Fig. 1. Reactants are fed through the inner tube (known as
the lumen) from where they can diffuse through the thin skin
membrane to the outer annular region (spongy matrix) where
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Fig. 1. Schematic representation of the hollow fiber reactor.

the reaction occurs with the enzyme biocatalyst therein. The
thin skin membrane being permeable to reactants and products
but impermeable to the high molecular weight enzyme. Products
diffuse back through the membrane to the lumen and flows with
the bulk stream.

The model under steady-state and isothermal regime is based
on the following assumptions:

(1) Reactor geometry is cylindrical.
(2) No radial convection in the thin membrane and the spongy

matrix.
(3) Single catalytic reaction occurs in the spongy matrix

(A + B ↔ Products).
(4) Skin membrane is inert and the reaction occurs only in the

spongy matrix.
(5) Constant effective diffusion coefficients in the membrane

and spongy region.
(6) When dense membrane (non-porous polymer) is consid-

ered, partition coefficients at both membrane faces are
constant.

(7) At r = d, an impermeable wall exist.

Thus, the governing equation for the inert membrane (see
Fig. 1) can be written as:

Defm

r

d

dr
r

dC

dr
= 0, a ≤ r ≤ b (1)

where Defm and C denote effective diffusion coefficient and con-
centration of the key component in the membrane, respectively.
Eq. (1) must be integrated with boundary conditions:

C = Ca r = a, C = Cb r = b (2)

Solving differential equation (1), the mass balance can be
conveniently written in the following fashion:

kL(C0 − Ca)2πa dz = Defm(Ca − Cb)

a ln(b/a)
2πa dz

= ηR(b)π(d2 − b2) dz (3)

where η is the effectiveness factor for the spongy matrix region,
R(b) the intrinsic reaction rate per unit spongy matrix volume,
evaluated at r = b, (C = Cb) and kL is the mass transfer coefficient
in the lumen, that will depend upon fluidynamic conditions.

By introducing:

B = ηR(b)(d2 − b2) (4)

and taking into account Eq. (3), the unknown concentrations Ca

and Cb can be calculated as

Ca = C0 − B

2kLa
(5)

Cb = C0 − B

2

[
1

kLa
+ ln(b/a)

Defm

]
(6)

The procedure can also be applied when the thin mem-
brane is a dense (non-porous) polymer. The concentration profile
as a function of the fiber radius will be discontinuous at the
lumen–membrane and membrane–spongy region interfaces. The
equilibrium partition coefficients:

Ka = Cam

Ca

and Kb = Cbm

Cb

(7)

provide the relation between interface concentration membrane
side and lumen or spongy matrix side, respectively. In this case
the equation to estimate Ca (Eq. (5)) will be the same but:

Cam = KaCa and Cb = Ka C0 − B

2

[
Ka

kLa
+ ln(b/a)

Defm

]
(8)

Eqs. (5) and (6) or (5) and (8) must be used to simulate reac-
tor performance and concentration profile calculation along the
reactor coordinate (z). Usually at each point along z, the non-
linear second order differential mass balance within the spongy
matrix must be numerically solved to estimate the flux and hence
parameter B. In this contribution an approximate procedure
recently presented by the authors will be used.

To obtain η the dimensionless mass balance differential equa-
tion in the spongy matrix region:

1

x

d

dx
x

dC∗

dx
= φ2R∗(C∗) (9)

should be solved subject to the following dimensionless bound-
ary conditions:

C∗ = 1 at x = α and
dC∗

dx
= 0 at x = 1 (10)

Where the following dimensionless variables were defined:

x = r

d
, C∗ = C

Cb

, R∗(C∗) = R(C)

R(Cb)
(11)

and

φ2 = d2R(Cb)

DefCb

(12)

denotes Thiele modulus while α = b/d
By definition:

η =
∫ 1
α

R∗(C∗)x dx∫ 1
α

x dx
= 2

∫ 1
α

R∗(C∗)x dx

1 − α2 (13)

However, from Eq. (9):

x
dC∗

dx

∣∣∣∣
1

α

= φ2
∫ 1

α

R∗(C∗)x dx (14)
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Now, taking into account conditions (10) and Eq. (14):

η = − 2α

(1 − α2)φ2

dC∗

dx

∣∣∣∣
α

(15)

The matching expression proposed by Gottifredi et al. [16] is
used to fit asymptotic expressions for large and small φ values:

η = [φ∗2 + exp(−δ φ∗2)]
−1/2

(16)

where

φ∗ = φ

P
, P = 2α

1 − α2 ρ (17)

ρ =
[

2
∫ 1

0
R∗(C∗)dC∗

]1/2

(18)

and

δ = 1 − 2σ∗, σ∗ = −2R∗′
(1)α2

(1 − α2)3 ρ2
[

3

4
+ α4

4
− α2 + ln α

]
(19)

R∗′
(1) denotes R*(C*) derivative evaluated at C* = 1. Effective-

ness factor calculation along reactor axial position can now be
carried out through a very simple and accurate algebraic routine
avoiding the numerical solution of Eq. (9). It must be stressed
that R*(C*) describes any arbitrary kinetic expression [15].

3. Hollow fiber bioreactor simulation (design equation)

Using the heterogeneous one-dimensional model [17],
accounting for interfacial, intra-membrane and intra-spongy
phase gradients, the key component conversion (X) over an
elementary bioreactor volume may now be written as

dX

dz
= Ωη(Cb)R(Cb)

RV

F◦ (20)

where Ω, RV and F◦ are the bioreactor total cross section, the
spongy region to total reactor volume ratio and the key compo-
nent entrance molar feed rate, respectively. It must be noticed
that the appropriate definition of η allows dealing with a plug
flow homogeneous reactor. Since in η calculation the interphase
mass transfer coefficient kL and the driven force, difference
between the mixing cup concentration C0 in the fluid phase
and the concentration on the inert membrane Ca, is taken into
account.

This equation must be solved subject to the following condi-
tions:

C0 = C0
0(X = 0) at z = 0 (21)

where

C0 = C0
0(1 − X)

C0
0 denotes key component mixing cup concentration at the

reactor entrance. It should be stressed that Cb can only be found
through an algebraic trial and error procedure. So

1. Start at the reactor entrance. At this position it is assumed
Cb = C0

0.
2. With Eq. (16), the effectiveness factor η is calculated since

all the parameters are known.
3. With Eqs. (4)–(6), B, Ca and Cb are calculated (or either with

Eqs. (5) and (8)).
4. With this value of Cb a correction is made with Eqs. (16),

(4), (5) and (6) (or Eqs. (5) and (8)).
5. The whole procedure is repeated until two successive cal-

culations of Cb indicate the desired convergence has been
achieved.

6. The next step of the Runge-Kutta procedure on Eq. (20) is
speeded up using the values of η, C◦, Ca and Cb found in the
previous step as first guess.

Therefore, the values of C0, Ca, Cb, η and X along the reactor
are obtained and the complete simulation of bioreactor done. As
can clearly be seen the numerical solution of the second order
non-linear differential mass balance (Eq. (9)), is avoided and
replaced by an algebraic rapidly convergent method.

4. Results and discussion

It must be stressed that the method developed in this contribu-
tion reduces the prediction of the membrane reactor performance
to a well-known plug flow reactor in which an algebraic equation
must be solved in each step of the integration interval.

The usual problems associated with the numerical integration
of a non-linear second order differential equation, with boundary
values, are completely overcome with an early procedure of the
authors [15] applied to the specific geometry of a hollow fiber
bioreactor.

Jayaraman and Kulkarni [11] presented a numerical proce-
dure to predict the performance of a hollow fiber membrane
reactor assuming fully developed laminar flow in the core and
Michaelis–Menten expression to describe the catalytic kinetics
into the spongy region. The final expression implies the numeri-
cal solution of an integro differential equation (Volterra type)
together with the numerical integration, in each step, of the
differential mass balance equation (9). They claim that numeri-
cal integration can be easily performed with standard shooting
method routines. This is only true when mild concentration pro-
files in the spongy region are met (i.e. φ is small). But even
in such a case the procedure of solving the reaction diffusion
equation at each step is quite time consuming. With our proce-
dure, instead, a non-linear algebraic equation must be solved at
each step where, in all cases, the initial guess is nearby the true
solution.

Conversion profiles estimated with our simple procedure
are presented in Fig. 2 as continuous lines. Michaelis–Menten
kinetic expression (see Eq. (22)) was used in this simulation with
two values of Vm. Both curves reflect the influence of increasing
the rate of reaction while keeping the other parameter fixed. As
can be seen conversion increases as Vm increases at each axial
position along the reactor although the slope clearly shows the
influence of the decaying driving force as reactive consumption
approaches 90%. In the same Fig. 2, for comparison purposes,
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Fig. 2. Substrate concentration axial profiles. Conditions: (Km/C0
0) = 1;

d/b = 1.5; Def/Defm = 10; kL = 10−4 m/s; F◦ = 7.85 × 10−10 mol/s. Upper curve:
Vm = 0.655 mol/m3 s (open symbols). Underneath Curve: Vm = 0.295 mol/m3 s
(close symbols).

values predicted by Jayaraman and Kulkarni [11] (circles) and
with finite difference method (squares) are also shown. As can be
seen our simple procedure is very accurate since no noticeable
differences are observed.

5. Application

The procedure was also applied to simulate the behavior of
a relevant industrial process performed in membrane reactors.
Drioli and Giorno [2] mentioned this type of reactor in the case
of industrial production of lactic acid using biocatalysts.

Hooijmans et al. [18] carried out experiments for determining
the intrinsic kinetic parameters of an agarose-gel immobi-
lized oxygen consuming enzyme: l-lactate 2-monooxygenase.
The reaction rate on the enzyme is well described by
Michaelis–Menten kinetics since oxygen is the sole rate limiting
substrate:

R(C) = Vm C

Km + C
(22)

The kinetic parameters values obtained at 37 ◦C for the reac-
tion:

CH3–CHOH–COOH + O2→ CH3–COOH + CO2+H2O

are Vm = 6 × 10−2 mol/m3 s, Km = 0.05 mol/m3

Authors [18] also reported oxygen effective diffusivity
in the agarose support (Def = 2.3 × 10−9 m2/s). To perform
the reactor performance simulation a number of assump-
tions have been introduced: oxygen effective diffusivity in
the skin (Defm = 3 × 10−10 m2/s), geometry reactor param-
eters (a = 1 × 10−4 m; b = 1.05 × 10−4 m; d = 1.75 × 10−4 m,
L = 0.2 m), liquid flow rate (Q = 1.57 × 10−9 m3/s). Thus a
Reynolds number of around 10 results with a pressure drop of
40 kPa. A film mass transfers coefficient (kL) of 4.4 × 10−5 m/s
was assumed, after Hooijmans et al. [19]. The initial oxygen
concentration was 0.7 mol/m3.

Fig. 3. Concentration profiles along the membrane reactor axial coordinate.

Fig. 4. Effectiveness factor and conversion along the membrane bioreactor.

Bulk oxygen concentration profiles in the lumen (C0), at the
skin–lumen interface (Ca) and skin–spongy interface (Cb) as
predicted with our procedure are presented in Fig. 3. It is clearly
seen that concentration ratios (C0/Ca, C0/Cb) increases along
the reactor axial position to sustain oxygen consumption in the
spongy region although Cb is also decaying. As a consequence
while conversion increases η, as a global effectiveness reac-
tion factor, decreases along the reactor flow coordinate. This
is clearly shown in Fig. 4 where η and conversion results are
plotted as function of z. In this particular case the reaction rate is
small in comparison with rate of oxygen diffusion in the spongy
region. Nevertheless η decreases as driving force for the whole
process decreases because it was defined as a global coefficient
taking into account concentration depletion between bulk and
spongy interfaces.

6. Conclusions

A simple, rigorous and accurate procedure to simulate a hol-
low fiber membrane biocatalytic reactor has been proposed. With
the introduction of an appropriate definition of an overall effec-
tiveness factor, that takes into account the effect of the chemical
consumption as well as mass transfer resistances, mass balance
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of key component in the reactor is reduced to the well-known
plug flow packed bed catalytic reactor [17].

It can be applied to any biocatalytic system provided the
kinetic behavior can be described by a single chemical reac-
tion although there is no limitation regarding the complexity of
the resulting kinetic expression. The usual instabilities and stiff-
ness associated with the numerical solution of the non-linear
second order, boundary values, differential equation [20] are
completely overcome with the proposed procedure since η is
estimated through an algebraic equation.

The outcoming results expressed in terms of conversion pro-
files along the reactor show a fair agreement with previous
findings obtained by numerical solution of the reaction diffusion
equation in the spongy region where the catalyst is immobilized.

A biocatalytic reaction system previously investigated to
study enzyme immobilization were used to simulate a hollow
fiber reactor assuming some geometrical parameters but with
kinetic parameters reported in the contribution [18]. Membrane
reactor simulation takes a few seconds and conversion profiles
can be easily generated as function of reactor axial coordinate.

The effect of mass transfer resistances can also be seen by
plotting the concentration profiles at each boundary of the hollow
fiber and also the corresponding effectiveness factor values. It
shows that radial mass transfer rates decrease along the reactor
which causes a similar effect on the overall effectiveness factor.
This behavior does not match with the usual plug flow packed
bed reactor where η increases with conversion along the reactor.

It is expected that the present contribution will be useful to
analyze and simulate membrane biocatalytic reaction both for
research and scale up purposes even in those cases where the
catalyst is not uniformly distributed in the spongy region [15].
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