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Abstract--An analytical simple algebraic expression for isothermal effectiveness factor (q) in a porous pellet is 
presented. Arbitrary kinetic expressions are investigated and the external mass transfer effect is also considered. 
The resulting analytical expression is found after matching asymptotic expressions of r) valid for large and small 
values of Thiele modulus. 

The agreement between approximated and numerical results is surprisingly good. For most cases analyzed 
maximum deviation are below 3% for power law type kinetic expressions provided the reaction order is greater 
than 0.5. More severe limitation arises for Langmuir-Hinshelwood kinetic expressions. In actual facts the proposed 
analytical expressions is unable to predict effectiveness factor greater than one. 

Nevertheless, as will be shown in future works, this very simple procedure can be safely used to predict the 
effectiveness in more complex situations such as those where activity distribution must be considered or where the 
kinetic parameters will be function of composition and/or spatial coordinates. 

INTRODUCTION 
The effectiveness factor(v), defined as the actual 
rate of reaction divided by the rate which 
would occur in the absence of mass and heat 
transfer resistance, is an important parameter in the 
design of catalytic chemical reactors which use porous 
particles as catalysts. It plays a fundamental role in the 
study of the simulation and stability of packed bed 
reactors and must be taken into account when kinetic 
parameters are to be measured in this kind of reactors. 
As recently pointed out by Churchill[l], due to this fact, 
and also because of the mathematical tractability of the 
problem, a great number of contributions on the subject 
have been written. Fortunately, Aris[Z] has been able to 
prepare a concise review in which the outstanding and 
classical features of the subject are superbly presented. 
In spite of many efforts, as far as the authors can 
ascertain, there is still the lack of a generalized analytical 
expression for the effectiveness factor. analytical rela- 
tionships are not generally possible for reaction orders 
different from one. However, Petersen[3] suggested the 
use of the analytical expression for first order reactions 
provided the Thiele modulus (h) is replaced by the 
asymptotic value of (l/v) when h-m. Moreover, after 
Rester et 01.[4], and Rester and Aris[5], the simple 
results obtained in slab geometry can be used for other 
geometrical shapes with a maximum deviation of 16%, in 
the case of first order isothermal reactions, provided the 
Thiele modulus has been properly defined regarding the 
characteristic length (see &isR). 

The puppose of this contribution is to investigate the 
possibility of existence of a generalized expression fox 
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the effectiveness factor for isothermal reaction in porous 
slab pellets. No other restrictions will be invoked. Since 
thermal conductivity of catalyst pellets is ordinarily very 
much higher than the effective diffusivity, the isothermal 
restriction is not too serious. The analysis of the pellet 
shape on the existence of a generalized expression will 
be presented in a future work. 

Main results are presented for a reaction of the type 
A + ~Bti 0, but they can be extended very easily to 
other types of reactions. Basically, the method used to 
obtain this general expression is rather simple. First, 
asymptotic analytical expressions for 11, at low and high 
values of the Thiele modulus, are obtained and then they 
are matched. The resulting analytical expression should 
produce reasonable estimates of 7 valid over the full 
range of the Thiele modulus values. In fact, when these 
results are compared with numerical values, obtained 
after solving the corresponding non linear differential 
equations, a fairly good correlation is found, with a 
maximum deviation to the order of 3%, exept for very 
few particular cases. 

Finally, it is shown, with a simple example, how to 
extend our results to other situations in which external 
mass transfer resistances are to be considered. 

ANALYSlS 

Let us consider the problem of estimating the 
effectiveness factor in an isothermal porous slab in 
which species A, B, C and D diffuse and simultaneously 
react according to the following stoichiometry: 

2 vsi =o 

where S, represents any of the species in a given order 
and v,, the corresponding stoichiometric coefficient. It is 
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clearly assumed that a single independent reaction 
occurs in this system. It will be further assumed that 
species A is so chosen in eqn (1) that its Vi will be (- 1). 
The dimensional concentration of any of the species in 
the bulk of the fluid phase will be denoted by CA while its 
corresponding value at the pellet surface will be C$. To 
illustrate our procedure, firstly it will be assumed that 
CL = Cl, for all components of the reacting system, thus 
neglecting the effect of any external mass transfer resis- 
tance; and secondly, that the rate of reaction in the 
pseudo homogeneous system can be expressed as a 
power of the concentration of the reacting species. Both 
restrictions will be analyzed later on by considering the 
effect of external mass transfer resistances and by also 
consideiug other types of expressions for the rate of 
reactions such as the Langmuir-Hinshelwood type. 

Thus, the rate of reaction per unit volume will be given 
by the following expression: 

r. = k C;"'C~b -f C>Tz”) 

where K is the equlibrium thermodynamic constant and 
k the specific rate for the forward reaction. C’ being the 
actual concentration inside the pellet and m, b, c and d 
the orders of reactions for species A, B, C and D 
respectively. The dimensionless rate of reaction can be 
obtained by dividing eqn (2) by its surface value: 

(3) 

where 

K’= K[C;mC;b/C;cC;d]s. (4) 

S denotes the surface value of the quantity in the 
brackets. Clearly, the dimensionless concentration of any 
of the species Ci has been defined by: 

ci =(CI/C:,). (5) 

For eqn (3) to be thermodynamically consistent, R must 
be subject to the following condition: 

K’[C~cC~“K,mC~b].~ (6) 

where the suffix equation denotes the equilibrium value. 
Taking into account previous assumptions and con- 

sidering unidirectional diffusion flow in the absence of a 
pressure gradient, surface transport and steady state 
conditions the dimensionless mass balance for each spe- 
cies in the porous slab, can be written, by the following 
expression: 

where the subindex i applies for any species (A, B, C 

and D), x being the dimensionless normalized distance 
measured from the surface and: 

Di being the effective diffusivity coefficient, and L the half 
thickness of the slab. It must be stressed that vA = - 1 was 
assumed. 

Equations (7) are subject to the following boundary 
conditions: 

G(O)=l; (dCJdx)=O at x=1. (1Oa.b) 

It is clear that A was chosen as a key component since 
yA = 1. Moreover, the actual key component must be 
chosen in such a way that yB < 1; otherwise, species B 
must be taken as key component 

(11) 

according to mass balance (eqn 7) for species A and 
boundary conditions (lob). Concentrations of species B, C 
and D can now be rewritten in terms of C,,: 

cj = n(C* - 1 + n-‘) = n(Ca -ri). (12) 

It should be noted that since, by definition, y= and rD 
are negative values, there is no restriction on their ab- 
solute values since Cc and CD are always greater than 
zero. By replacing eqn (12) in eqn (3) and the resulting 
expression in the corresponding mass balance for com- 
ponent A: 

!E&p 
[ 1 
v -kyc, -r,yy,” 

x 1 1 _ (CA - r,)ftc* - rJ# 
K*c,4YcA -l-d I (13) 

with 

(14) 

At tirst sight, the solution to eqn (13) seems a very 
difficult task. However, it would be easy to solve it by 
perturbation methods when parameter h is either small 
or large. In fact, when h*+O, eqn (13) suggests itself the 
following series as solution: 

CA = A,(x) t h’A,(x) + /PAZ(x) t . . . WI 

By replacing eqn (15) in eqn (13) and by equating terms 
of like powers of h, it can be shown that up to terms of 
h*, A,,(x). A,(x) and AZ(x) must satisfy the following 
uncoupled system: 

dZA. 
w=O (16) 
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$$= [~]-‘v~‘~,[m~,m-l(~~-r~)b while 

+ $A,“(Ao - r,)b-’ 

-~(d(A,-Tc)“fA,-r~)d-’ 

(18) 

q = oh-’ + O(h?) (27) 

when /I’+ m. By comparing eqns (26) and (27) with eqns 
(20) and (22) respectively, the coefficients a, r and s must 
satisfy the following set of algebraic equations: 

subject to the following conditions: 

AdO) = I; As(O) = AJO) = 0 

~+L~=O ,Q x=1_ 

(l%W 

(17) 

The analytical solutions to AO, A, and AP are so simple 
that need not to be written. However, since Ao= 1, the 
effectiveness factor up to term of h* results to be.: 

where 

r) = 1 -j!S*h2+qh4) (20) 

81= f [y]-‘( m + bya -+, (cyc + dy&}. 

(21) 

On the other hand, when h +m the reaction rate is so 
large that equilibrium concentration is reached at the 
center of the porous slab and the effectiveness factor can 
be easily calculated applying the Bishoff[‘l] transfor- 
mation. Thus 

,=;+o $ 0 
where 

CAcp being the equilibrium concentration of species A 
which, according to eqn (6), must be the algebraic solu- 
tion to: 

In order to match expressions (20) and (22), valid for 
small and large values of h respectively, the following 
expression for 7 is proposed: 

9=nw.. 

In fact, by expanding eqn (25) when h’+O it is found 

q = ar112s-1 + a $ r-l12s-l _ r1/2s-2 > h2+ o(h4) 

cm 

r=(s/a)‘; s =&(1*\/(1-2~‘~~)}. (29a,b) 

In this general form a, r and s can be calculated from the 
coefficients deduced by the asymptotic expressions of 9. 
In order to check the validity of the general expressions 
(25), specific cases must be analyzed. 

sPl?AmTc cM?s 

(1) Irreversible reactions (K’ +QI) 
(la) 

It was found that the positive root produces much better 
results than the negative one. A solution will exist provided 
m I 3, otherwise s should be imigiuary. However, m > 3 is 
not a case of interest. Table 1 shows some of the results 
obtained compared with numerical estimates of q(vN) as a 
function of h. The results for h < 0.5 are not presented 
since the deviations are, in all cases investigated, 
extremely small. For comparison purposes, in Table 1 
values of qr given by: 

TT = tWh WaMNa 1 (30) 

are also presented. It can be concluded that eqn (25) 
gives extremely good results when m 3 1 and they are 
even better than those given by the empirical eqns (30) as 
proposed by Petersen [3]. However, when m = 0.5, it can 
be seen that for h < 2, our proposed expression gives 
very accurate results, much better than those given by 
eqn (30), while the situation is inverted for h > 2. For 
practical purposes, it can be concluded that our proposed 
expression can be safely used for all range of values of h 
when m * 0.5. However, when m < 0.5, it should only be 
used for h < 1. Under these conditions, it produces 
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Table 1. 
- 
m 

3 - 
0.5 

0.8 

1.0 

1.6 

2.0 

4.0 
- 

T 0.5 1.5 8.9 1.0 

0.8300 0.8900 0.7735 0.77ee 0.7978 

0.7616 0.7616 0.5968 0.699f 0.7217 

0.6034 0.6034 0.5837 0.64OC 0.5.560 

0.4820 0.4820 

0.2498 0.2496 

0.4224 0.4213 0.4571 

_LL 0.2212 0.2230 0.2236 

2.0 

0.8913 

0.7263 0.7325 0.7685 

0.6455 0.5525 

0.4866 0.4951 

0.3820 0.3900 

0.2009 0.2032 

0.6667 

0.6174 

0.4022 

0.2041 

0.9602 0.9600 a.9419 

_%_ 
0.9244 

0.9048 0.9000 0.8857 0.8309 

0.8698 0.8496 0.6075 

0.7367 0.7062 0.6632 0.6069 

0.6lSS 0.5774 0.5423 

0.3285 0.2890 0.2883 

0.6623 0.6541 0.7l73 

0.6779 0.5630 0.6262 

0.4264 0.4324 0.4680 

0.3333 0.3364 0.5611 

0.1741 0.1767 0.1758 

estimates of q, which are generally better than those 1 - by, + b(b - 1) 7,‘lZ 
given by empirical expression (30). YB=G0.3 4(2)( m+l 

WI b#O +~(l-(b-l)7&b;,:),Y;g 

b=2 

bfl or 2 

The following cases were investigated: m = 1, b = 1, 
yB = [0.3; 0.5; 0.81; m = 2, b = 1, yB = [0.3; 0.5; 0.81; m = 
0.5, b = 1, yB = [0.3;0.5;0.8]; m = 0.5, b = 0.5, 7m = 0.5. 
In all cases the deviations among approximate and 
numerical results were very small (maximum 3%) as can 
be seen in Table 2 for yB = 0.5, and values of q esti- 

Table 2. 
- 

I T------l 2.0; 1.0 0.5 ; 1.0 1.9 : 1.0 0,5 : 0.6 

?a 
0.9419 

0.8657 

0.8074 

0.6625 

0.5408 

0.2536 

TN 

0.9411 

t ‘r, ?N 

0.9354 0.9245 0.9254 0. sqs 0.8927 0.8948 0.4107 0.8333 0.8412 0.8780 

0.864f 0.8524 0.8315 0.8362 0.8386 0.7745 0.7797 om40 0.6934 0.6997 0.7456 

0.6051 0.7902 0.7629 0.7653 0.6969 0.7040 0.7293 0.6694 0.6170 0.6600 

0.66Sf 0.6399 0.6098 

0.5sx 0.5183 

0.2798 0.2724 

0.4910 

0.2565 

0.6153 

0.4942 

0.2678 

0.5869 0.6462 0.5647 0.4896 

0.4263 0.4360 0.4462 0.9779 

a.2263 0.2262 

0.4551 

0.5575 

0.1677 
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mated by eqn (25) much better coincide with the exact 
results than those calculated by cqn (30). Incidentally, it 
should be noted that the case m = 1; b = 1 was pre- 
viously analyzed by Cunningham and Maymo[8]. Ac- 
cording to their work, q should depend upon at least 
three parameters. However our analysis quite clearly 
shows that 7 can only depend upon h and yB. In fact, 
their graphs can be joined all together in a single one, 
except that which refers to the reversible case. 

(2) Reversible reactions 

In this case it is very difficult to obtain analytical 
values of 7, mainly due to the lower limits of integration 
(see eqn (24). In the simplest case of first order reversible 
reaction it can be shown that (m = 1, b = 0, c = 1, d = 0): 

(31) 

and 

o = [H]“‘. (32) 

These results suggest a redefinition of h under the fol- 
lowing mod&d form: 

h =h K'-Yc “* 
m ( ) (K- 1) 

so that the resulting expressions for &, a and so for n 
are exactly the same as those for first order irreversible 
reactions if h, is used instead of h. The analytical 
expression for q in this case will be: 

9 = tangh (M/L. (34) 

Thus, deviations between approximate and exact results 
will be the same as those deduced from Table 1 for the 
case m = 1. 

Some calculations made by the authors for the case 
m = b = c = d = 1 revealed that the observed deviations 
between numerical and approximate results are of the 
same order of magnitude as for the irreversible case 
m = 1, b = 1 (maximum deviation less than 3%). 

(3) Langmuir-Hinshelwood kinetic expression 
Robert and Sattertield[9] have shown that these kind 

of kinetic expressions can be classified in two main 
classes. One of them behaves in such a way that n can 
be even greater than 1. This case cannot be represented 
by our simple eqn (25). In fact, it would be necessary a 
second term which implies further terms in both asyrnp- 
totic expressions, as will be shown in a future work. 
However, for the case b =0, m = 1 and K+a the 
second class leads to the following dimensionless kinetic 
exaression: 

where K, is the characteristic parameter of the system B, being the Biot number for component i (& = 

which can take any value between -0.98 < K, < m. 
Negative values are intended to explain the depression in 
the actual reaction rate caused by products which can be 
absorbed at the catalyst’s surface. In this case, it can be 
shown, following the above described procedure, that the 
asymptotic expressions for 7) are: 

,=l-1 3 h,*+OW (36) 

when h1 +O and 

? 1  =  +  

[ ( 1 

l_““K+““]“2~+O(LJ 
I 1 I 

where h, +m; where 

h, = N(l +&)I”. 

Thus, if eqns (36) and (37) are matched with: 

the following relation for a,, r, and s, results: 

a, = ( ( ln(l+K,) “2 + l-7 
1 > 

s*+~(*-;:~)) 

r~ = (sl/ad2. 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

In Table 3, values of q calculated with eqn (39) are 
compared with numerical values obtained by solving the 
corresponding differential equation and also with values 
of 7 generated by eqn (30). In this case g* was cal- 
culated using values of b, with the negative root of the 
discrin&ant. Clearly, when K, d 1, a fair agreement is 
found among numerical and approximate results and the 
general procedure can be safely used. However, when 
K, > 1. eqn (30) or eqn (39) could give reasonable results 
if, in this last case, the negative value of the discriminant 
is used. 

(4) Mass transfer externai resistances 

When G f CL, the effectiveness factor calculated 
with boundary conditions pi = CL at the surface must be 
corrected, and according to its definition: 

n = q* (rb.lrLl) (43) 

where n. is the value of q estimated as a function of h 
as defined by eqn (8). However, the mass balance at the 
surface for each component can be written in the fol- 
lowing dimensionless form as: 
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- 

KI 

8 - 

0. 1 

0.4 

0. 6 

1.0 

2.0 

5. 0 

- 

0.9974 0.9982 

0.9659 

0.9988 0.9971 r 0.9638 0.9565 0.9741 

0.3778 0.8695 0.8465 0.8969 

0.6232 0.8058 0. 7825 0.8598 

0.5599 0.5133 0.5662 

0.2276 0.2130 0.2130 

0.6179 

0.2531 

Table 3. 

1.0 

0.9970 0.9915 0.9994 0.9970 0.9978 0.9995 

0.9660 0.9537 0.9912 0.9675 0.9667 0.9800 

0.8922 0.8551 0.9658 0.3609 0.8812 0.6644 

0.3260 0.7950 0.9475 0.9250 0.8231 0.8194 

0.5539 0.5245 0.8196 0.6207 0.5729 0.5430 

0.2216 0.2215 0.4332 0.2462 0.2480 0.2425 

LUD,). Equation (44) represents a set of algebraic 
equations which must be solved simultaueously to lind 
the ratio (C’XL) for each component. Once it is solved, 
the true value of 1) can be found with the help of eqn 
(43). 

To solve the system given by eqn (44) some trial and 
error procedure must be used, since h2 is not known. Let 
us take as an example the case of an irreversible reaction 
of order (m,O). In this case eqn (44) can be written as: 

, 
( > 2 =x0 (s+h2) 

h’ (r+ hy+ 1* 

(45) 

As data we, only have values of 8, and ho. that is the 
value of the Thiele modulus evaluated a bulk gas phase 
conditions. Taking into account the definition of h: 

h* = ho2 (;$:) = ho2(C;, /C;J”-‘. (4) 

Replacing eqn (46) in eqn (45): 

(47) 

Thus, for each pair of values of k. and B,, (C;,/C’;.) 
can be solved once tbe order of reaction is fixed. Then, 
the corrected true value of 4 can be. calculated from eqn 
(43). 

Figure I shows the results that can be obtained for a 
second order irreversible reaction. Since the basic 
expression used for estimating q. is almost exact (2% 
maximum deviation), the new values of TJ should only 
have a maximum deviation of 2% from their true values. 

CONCLUSIONS 

A new approach to estimate the effectiveness factor of 
a single reaction in a slab isothermal catalyst is presen- 
ted. The method assumes that asymptotic expressions 
for q. valid at small and large values of the Thiele 
modulus, can be matched with a unique and simple 
algebraic expression with only three free coefficients. 
These coefficients, however, must satisfy a set of three 
algebraic equations, so that their values are finally deter- 
mined as a function of the parameter derived from q 
asymptotic expressions. 

When the results so obtained are compared with the 
corresponding values of q calculated by numerical 
methods an extremely good agreement is found. 

The theoretical analysis was presented for a general 
kinetic expression of the power law type but it is shown 
that it can be also used with other type of kinetic 
expressions. Its unique limitation, is that the results are 
valid provided the order of the reactive species is greater 
than 0.5 approximately. A more severe limitation arises 
when a Langmuir-Hinshelwood kinetic express’ion is 
tested. Nevertheless, provided the modified dimension 
less absorption constant is not too high (K, G 1) a fair 
agreement between approximate and numerical results is 
found. 

It can also be concluded that the final expression 
produces results as good as those obtained by the 
PetersenU] criterion which suggests the use of first 
order analytical expressions with a modified Thiele 
modulus. However it must be noted that our proposed 
expressions follows the differences in r) vs Ir curves 
caused by the effect of reaction order. In fact it is shown 
that it is impossible to lit with a unique curve (e.g. unique 
parameter) all the cases. Since the final expression is 
accurate and simple, the case of external mass transfer 
resistance can be very easily solved as shown with an 
example. However, an outstanding feature of this 
method is the possibility to use it for the analysis of 
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Fig. 1. Effectiveness factor (7) for second order irreversible reactor in an isothermal flat pellet as function of qv 
with Biot number (BI> as parameter. 

more complex situations such as activity distribution K 
inside the porous pellets, dependence of kinetic KI 
parameters, such as diffusivity coefficients, with position L 
or concentration, and finally the analysis of selectivity m 
when more than a single reaction can take place inside r 
the pellets. Another important feature is its simplicity, r0 
which renders it suitable for programmed reactor design rt 
since once the kinetic expression is know. n can be s 
evaluated step by step through an algebraic equation. X 

In future works other situations will be analyzed with 
the purpose to investigate the effect of the geometrical 
shape of the pellet and its activity distribution in the tinal 
expression of 7). 

Finally, it can be concluded that a unique general 
expression of n, valid for any reaction order in a slab 
catalyst, is not possible. In fact, for this to be true the 
product so* must be equal to one and, in all cases 
investigated in this work, SC? was always greater than 1.3 
approximately. 

Greek symbols 
a parameter defined by eqn (23) 

8, parameter defined by eqn (21) 
y parameter defined by eqn (9) 
r parameter defined by eqn (12) 
7) effectiveness factor 
Y stoichiometric coefficient 
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it 
Bi 
C 

C’ 
C 
d 

D 
h 

h, 
k 

KL 
K 

NOTATION 
parameter defined by eqn (25) 
order of reaction for species B 
Biot number (kLi UDi) 
order of reaction for species C 
dimensional concentration 
dimensionless concentration 
order of reaction for species D 
effective difhivity coefficient 
Thiele Modulus defined by eqn (8) 
modified Tbiele Modulus 
specific rate for the forward reaction 
mass transfer coefficient 
equilibrium thermodynamic constant 

parameter defined by eqn (4) 
parameter defined by eqn (35) 
half thickness of slab 
order of reaction for species A 
parameter defined by eqn (25) 
rate of reaction per unit volume 
dimensionless rate of reaction 
parameter defined by eqn (25) 
dimensionless normalized distance measured from 

the surface 

Subindexes 
eq equilibrium value 

i refer to species A, B, C or D 
0 bulk fluid phase value 
s surface value 
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