
Supplemental Material A 

 

Application of the perturbation and matching technique 

 

Asymptotic solutions 

When 2
<< 1, one notices that Eq. (11) itself suggests the following series as an 

approximate solution: 

)(*)(1 42*  OxAC        (A-1) 

One can also expand R(C*) in a Taylor series to obtain: 

)(*)()1(')1()( 42*  OxARRCR      (A-2) 

Here R’(1) denotes the first derivative with respect to concentration, which is 

evaluated at C* =1. 

By replacing C* and R(C*), as given by Eqs. (A-1) and (A-2), in Eq. (11) and collecting 

terms of equal power of , the following linear ordinary equation is found: 
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which must be solved subject to the following boundary conditions: 

   0A at       1* x     and  0
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      at        0* x   (A-4) 

In solving Eq. (A-3) with standard analytical methods, and taking into account Eqs. (18) 

and (19), the following equation is found: 
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By substituting Eq. (A-5) into Eq. (A-2) and then in Eq. (21), the asymptotic expression 

for the effectiveness factor for the continuum heterogeneous biofilm model (), is found: 
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In this case: 
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Then Eq. (24) is found. 

When 2 , the reaction rate is very fast and the rate of diffusion low; therefore, the 

nutrient is completely consumed at the biofilm-fluid interphase. The dimensionless 

biofilm density and the nutrient effective diffusivity have values corresponding to x* = 1: 
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Therefore, Eq. (11) yields: 
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Considering boundary conditions defined in Eq. (16): 
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Then, Eq. (A-9) yields: 
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Solving Eq. (A-12), the first derivative of C
*
 at the biofilm-fluid interphase is obtained: 
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Thus, with Eqs. (23) and (A-13), the asymptotic expression for the effectiveness factor 

for large values of , Eq. (27), is found. 

 

Matching expression for the effectiveness factor 

The challenge is to find an expression capable of reproducing Eqs. (24) and (27) when 

<<1 and >>1, respectively.  

After several attempts (Churchill, 1977; Wedel and Luss, 1980; Gottifredi et al., 1981), 

Gottifredi and Gonzo (2005) succeeded in finding a rational expression that overcomes 

the inconvenience presented by previous expressions. The matching equation proposed 

here is (see Eq. (28)): 
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After expanding Eq. (A-14) for large and small values of *, yields: 
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And for 02   
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By comparing Eqs. (A-15) and (A-16) with Eqs. (24) and (27), respectively, conditions 

for the unknown parameter (d) of Eq. (A-14), are found: 

*21 d        (A-17) 

with 

2*          (A-18) 

 

 

 




