SUPPLEMENTAL MATERIAL A

Application of the Perturbation and Matching Technique

Considering the differential equation (11) and the rate expression (21), the mass balance

differential equation for the key substrate A is:
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Perturbation solutions
When << 1, one notices that Eq. (A-1) itself suggests the following series as an

approximate solution for Ca:
Ca =1+ A(x*) 6% + 0(4*) (A-2)
One can also expand r*(CZ) in a Taylor series to obtain:
(Ca) =1 M+1" (1) Ax*) 6% + 0(p*) (A-3)
Here r*'(l) is given by Eq. (22) and denotes the first derivative with respect to
CZ, evaluated at CZ =1. Also, r’ (1) =1.

By replacing C, and r (Cp), as given by Egs. (A-2) and (A-3), in Eq. (A-1) and
collecting terms of equal power of ¢, the following linear ordinary equation is found:
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which must be solved subject to the following boundary conditions:
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In solving Eq. (A-4) with standard analytical methods, and taking into account Egs. (27)

and (28), the following equation is found:
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By substituting Eq. (A-6) into Eq. (A-3) and then in Eq. (29), the asymptotic expression

for the effectiveness factor for the continuum heterogeneous biofilm model (7), is

found:
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Then:
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When ¢2 — oo, the reaction rate is very fast and the rate of diffusion low; therefore,

the key substrate is completely consumed at the biofilm-fluid interface. The

dimensionless biofilm density and the nutrient effective diffusivity have values

corresponding to x* = 1:
X7()=X7@®  and Dt (x*) =D ()

Therefore, Eq. (A-1) yields:
* dZCI\ 2 * * *
Dia @) 02 =¢° Xt (@ r (Ca)
X

Defining:
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Considering boundary conditions defined in Egs. (17) and (18):
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Then, Eq. (A-12) yields:
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Solving Eq. (A-15), the first derivative of CZ at the biofilm-fluid interphase is

obtained:
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Thus, with Egs. (31) and Egs.(A-16), the asymptotic expression for the effectiveness

factor for large values of ¢is found:
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Matching expression for the effectiveness factor

The challenge is to find an expression capable of reproducing Egs. (A-8) and (A-18)
when ¢<<1 and ¢>>1, respectively.

After several attempts (Churchill, 1977; Wedel and Luss, 1980; Gottifredi et al., 1981),
Gonzo and Gottifredi (2007) succeeded in finding a rational expression that overcomes
the inconvenience presented by previous expressions. The matching equation proposed
here is (see Eq. (32):

n=l5? v ep-d g2 Y? (A-19)

After expanding Eq. (A-19) for large and small values of ¢*, yields:

n="% (A-20)
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And for ¢2 <<1
1 *9
n~1- 5(1—d) @ (A-21)

By comparing Egs. (A-20) and (A-21) with Egs. (A-8) and (A-18), respectively,

conditions for the unknown parameter (d) of Eq. (A-19), are found:
d=1-20" (A-22)
with

o =0p (A-23)
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