SUPPLEMENTAL MATERIAL A

Application of the Perturbation and Matching Technique

Considering the differential equation (11) and the rate expression (21), the mass balance differential equation for the key substrate A is:

$$
\begin{equation*}
\frac{d}{d x^{*}} D_{f A}^{*} \frac{d C_{A}^{*}}{d x^{*}}=\phi^{2} X_{f}^{*}\left(\beta_{A}+1\right)\left(\beta_{B}+1\right) \frac{C_{A}^{*}}{\left(\beta_{A}+C_{A}^{*}\right)} \frac{\left[\Gamma_{B}\left(C_{A}^{*}-1\right)+1\right]}{\left[\beta_{B}+\Gamma_{B}\left(C_{A}^{*}-1\right)+1\right]} \tag{A-1}
\end{equation*}
$$

Perturbation solutions

When $\phi^{2} \ll 1$, one notices that Eq. (A-1) itself suggests the following series as an approximate solution for C_{A} :

$$
\begin{equation*}
C_{A}^{*}=1+A\left(x^{*}\right) \phi^{2}+O\left(\phi^{4}\right) \tag{A-2}
\end{equation*}
$$

One can also expand $r^{*}\left(C_{A}^{*}\right)$ in a Taylor series to obtain:

$$
\begin{equation*}
r^{*}\left(C_{A}^{*}\right)=r^{*}(1)+r^{*}(1) A\left(x^{*}\right) \phi^{2}+O\left(\phi^{4}\right) \tag{A-3}
\end{equation*}
$$

Here r^{*} '(1) is given by Eq. (22) and denotes the first derivative with respect to C_{A}^{*}, evaluated at $C_{A}^{*}=1$. Also, $r^{*}(1)=1$.

By replacing C_{A}^{*} and $r^{*}\left(C_{A}^{*}\right)$, as given by Eqs. (A-2) and (A-3), in Eq. (A-1) and collecting terms of equal power of ϕ, the following linear ordinary equation is found:

$$
\begin{equation*}
\frac{1}{d x^{*}} D_{f A}^{*}\left(x^{*}\right) \frac{d A}{d x^{*}}=X_{f}^{*}\left(x^{*}\right) \tag{A-4}
\end{equation*}
$$

which must be solved subject to the following boundary conditions:

$$
\begin{equation*}
A=0 \quad \text { at } \quad x^{*}=1 \quad \text { and } \quad \frac{d A}{d x^{*}}=0 \quad \text { at } \quad x^{*}=0 \tag{A-5}
\end{equation*}
$$

In solving Eq. (A-4) with standard analytical methods, and taking into account Eqs. (27) and (28), the following equation is found:
$A\left(x^{*}\right)=\frac{b \Psi^{2}}{c \bar{X}_{f} 0.2218}\left[\frac{1}{0.2218}\left[\left(1+\frac{x^{*}}{\Psi}\right)^{0.2218}-\left(1+\frac{1}{\Psi}\right)^{0.2218}\right]+\ln \left[\left(\frac{\left(1+\frac{1}{\Psi}\right)}{\left(1+\frac{x^{*}}{\Psi}\right)}\right]\right](\mathrm{A}-6)\right.$
By substituting Eq. (A-6) into Eq. (A-3) and then in Eq. (29), the asymptotic expression for the effectiveness factor for the continuum heterogeneous biofilm model (η), is found:

$$
\begin{equation*}
\eta=\int_{0}^{1} X_{f}^{*} r^{*}\left(C_{A}^{*}\right) d x^{*}=\int_{0}^{1} X_{f}^{*}\left[1+r^{*}(1) A\left(x^{*}\right) \phi^{2}\right] d x^{*} \tag{A-7}
\end{equation*}
$$

Then:

$$
\begin{equation*}
\eta=1-\sigma \phi^{2} \tag{A-8}
\end{equation*}
$$

Where

$$
\begin{equation*}
\sigma=\frac{b \Psi^{2}}{\bar{X}_{f}^{2} c(0.2218)} r^{* \prime(1)}(F) \tag{A-9}
\end{equation*}
$$

and
$F=-\frac{a \Psi}{(0.2218)(1.2218)}\left[\left(1+\frac{1}{\Psi}\right)^{1.2218}-1\right]+\frac{a\left(1+\frac{1}{\Psi}\right)^{0.2218}}{(0.2218)}-$
$-a \int_{0}^{1} \ln \left[\frac{1+\frac{1}{\Psi}}{1+\frac{x^{*}}{\Psi}}\right] d x^{*}-\frac{b \Psi\left[\left(1+\frac{1}{\Psi}\right)^{0.4436}-1\right]}{(0.2218)(0.4436)}+$

$$
+\frac{b \Psi\left(1+\frac{1}{\Psi}\right)^{0.2218}}{(0.2218)^{2}}\left[\left(1+\frac{1}{\Psi}\right)^{0.2218}-1\right]-b \int_{0}^{1}\left(1+\frac{x^{*}}{\Psi}\right)^{-0.7782} \ln \left[\frac{1+\frac{1}{\Psi}}{1+\frac{x^{*}}{\Psi}}\right] d x^{*}
$$

(A-10)
When $\phi^{2} \rightarrow \infty$, the reaction rate is very fast and the rate of diffusion low; therefore, the key substrate is completely consumed at the biofilm-fluid interface. The dimensionless biofilm density and the nutrient effective diffusivity have values corresponding to $x^{*}=1$:

$$
\begin{equation*}
X_{f}^{*}\left(x^{*}\right)=X_{f}^{*}(1) \quad \text { and } \quad D_{f}^{*}\left(x^{*}\right)=D_{f A}^{*}(1) \tag{A-11}
\end{equation*}
$$

Therefore, Eq. (A-1) yields:

$$
\begin{equation*}
D_{f A}^{*}(1) \frac{d^{2} C_{A}^{*}}{d x^{* 2}}=\phi^{2} X_{f}^{*}(1) r^{*}\left(C_{A}^{*}\right) \tag{A-12}
\end{equation*}
$$

Defining:

$$
\begin{align*}
& \frac{d C_{A}^{*}}{d x^{*}}=P \tag{A-13}\\
& \frac{d^{2} C_{A}^{*}}{d x^{*}}=\frac{d P}{d C_{A}^{*}} \frac{d C_{A}^{*}}{d x^{*}}=P \frac{d P}{d C_{A}^{*}}=\frac{1}{2} \frac{d P^{2}}{d C_{A}^{*}} \tag{A-14}
\end{align*}
$$

Considering boundary conditions defined in Eqs. (17) and (18):

$$
P(1)=\left.\frac{d C_{A}^{*}}{d x^{*}}\right|_{x^{*}=1} \quad \text { and } \quad P(0)=\left.\frac{d C_{A}^{*}}{d x^{*}}\right|_{x^{*}=0}=0
$$

Then, Eq. (A-12) yields:

$$
\begin{equation*}
\frac{d P^{2}}{d C_{A}^{*}}=\phi^{2} \frac{2 X_{f}^{*}(1)}{D_{f A}^{*}(1)} r^{*}\left(C_{A}^{*}\right) \tag{A-15}
\end{equation*}
$$

Solving Eq. (A-15), the first derivative of C_{A}^{*} at the biofilm-fluid interphase is obtained:

$$
\begin{equation*}
P(1)^{2}=\left[\left.\frac{d C_{A}^{*}}{d x^{*}}\right|_{x^{*}=1}\right]^{2}=\phi^{2} \frac{2 X_{f}^{*}(1)}{D_{f A}^{*}(1)} I \tag{A-16}
\end{equation*}
$$

With

$$
\begin{equation*}
I=\left(\beta_{A}+1\right)\left(\beta_{B}+1\right) \int_{0}^{1} \frac{C_{A}^{*}}{\left(\beta_{A}+C_{A}^{*}\right)} \frac{\left[\Gamma_{B}\left(C_{A}^{*}-1\right)+1\right]}{\left[\beta_{B}+\Gamma_{B}\left(C_{A}^{*}-1\right)+1\right]} d C_{A}^{*} \tag{A-17}
\end{equation*}
$$

Thus, with Eqs. (31) and Eqs.(A-16), the asymptotic expression for the effectiveness factor for large values of ϕ is found:

$$
\begin{equation*}
\eta=\frac{\left(2 D_{f A}^{*}(1) X_{f}^{*}(1) I\right)^{1 / 2}}{\phi}=\frac{\rho}{\phi}=\frac{1}{\phi^{*}} \tag{A-18}
\end{equation*}
$$

Matching expression for the effectiveness factor

The challenge is to find an expression capable of reproducing Eqs. (A-8) and (A-18) when $\phi \ll 1$ and $\phi \gg 1$, respectively.

After several attempts (Churchill, 1977; Wedel and Luss, 1980; Gottifredi et al., 1981), Gonzo and Gottifredi (2007) succeeded in finding a rational expression that overcomes the inconvenience presented by previous expressions. The matching equation proposed here is (see Eq. (32):

$$
\begin{equation*}
\eta=\left[\phi^{* 2}+\exp \left(-d \phi^{* 2}\right)\right]^{-(1 / 2)} \tag{A-19}
\end{equation*}
$$

After expanding Eq. (A-19) for large and small values of ϕ^{*}, yields:

$$
\begin{equation*}
\eta=\frac{1}{\phi^{*}} \tag{A-20}
\end{equation*}
$$

And for $\phi^{2} \ll 1$

$$
\begin{equation*}
\eta \approx 1-\frac{1}{2}(1-d) \phi^{* 2} \tag{A-21}
\end{equation*}
$$

By comparing Eqs. (A-20) and (A-21) with Eqs. (A-8) and (A-18), respectively, conditions for the unknown parameter (d) of Eq. (A-19), are found:

$$
\begin{equation*}
d=1-2 \sigma^{*} \tag{A-22}
\end{equation*}
$$

with

$$
\begin{equation*}
\sigma^{*}=\sigma \rho^{2} \tag{A-23}
\end{equation*}
$$

REFERENCES

Churchill SW. 1977. A generalized expression for the effectiveness factor of porous catalyst pellets. AIChE J 23:208-212.

Gonzo EE, Gottifredi JC. 2007. A simple and accurate method for simulation of hollow fiber biocatalyst membrane reactors. Biochem Eng J 37:80-85.

Gottifredi JC, Gonzo EE, Quiroga OD. 1981. Isothermal effectiveness factor I. Analytical expression for single reaction with arbitrary kinetics. Slab geometry. Chem Eng Sci 36:705-713.

Wedel S, Luss D. 1980. A rational approximation of the effectiveness factor. Chem Eng Commun 7:145-152.

