
 

 

SUPPLEMENTAL MATERIAL A 

 

Application of the Perturbation and Matching Technique 

 

Considering the differential equation (11) and the rate expression (21), the mass balance 

differential equation for the key substrate A is: 
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Perturbation solutions  

When 2
<< 1, one notices that Eq. (A-1) itself suggests the following series as an 

approximate solution for CA: 

)(*)(1 42*  OxACA        (A-2) 

One can also expand )( **
ACr  in a Taylor series to obtain: 

)(*)()1(')1()( 42****  OxArrCr A      (A-3) 

Here )1('*r is given by Eq. (22) and denotes the first derivative with respect to 

*
AC , evaluated at *

AC =1. Also, 1)1(* r . 

By replacing *
AC  and )( **

ACr , as given by Eqs. (A-2) and (A-3), in Eq. (A-1) and 

collecting terms of equal power of , the following linear ordinary equation is found: 
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which must be solved subject to the following boundary conditions: 

   0A at       1* x     and  0
*


dx

dA
      at        0* x   (A-5) 



In solving Eq. (A-4) with standard analytical methods, and taking into account Eqs. (27) 

and (28), the following equation is found: 
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By substituting Eq. (A-6) into Eq. (A-3) and then in Eq. (29), the asymptotic expression 

for the effectiveness factor for the continuum heterogeneous biofilm model (), is 

found: 
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Then: 

21         (A-8) 
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When 2 , the reaction rate is very fast and the rate of diffusion low; therefore, 

the key substrate is completely consumed at the biofilm-fluid interface. The 

dimensionless biofilm density and the nutrient effective diffusivity have values 

corresponding to x* = 1: 
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Therefore, Eq. (A-1) yields: 
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Considering boundary conditions defined in Eqs. (17) and (18): 
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Then, Eq. (A-12) yields: 
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Solving Eq. (A-15), the first derivative of *
AC  at the biofilm-fluid interphase is 

obtained: 
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Thus, with Eqs. (31) and Eqs.(A-16), the asymptotic expression for the effectiveness 

factor for large values of  is found: 
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Matching expression for the effectiveness factor 

The challenge is to find an expression capable of reproducing Eqs. (A-8) and (A-18) 

when <<1 and >>1, respectively.  

After several attempts (Churchill, 1977; Wedel and Luss, 1980; Gottifredi et al., 1981), 

Gonzo and Gottifredi (2007) succeeded in finding a rational expression that overcomes 

the inconvenience presented by previous expressions. The matching equation proposed 

here is (see Eq. (32): 
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After expanding Eq. (A-19) for large and small values of *, yields: 

*

1


         (A-20) 



And for 12   
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By comparing Eqs. (A-20) and (A-21) with Eqs. (A-8) and (A-18), respectively, 

conditions for the unknown parameter (d) of Eq. (A-19), are found: 

*21 d        (A-22) 

with 
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