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Modeling of Progesterone Release from Poly(3-Hydroxybutyrate) (PHB)
Membranes
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Abstract. Poly(3-hydroxybutyrate) (PHB) biodegradable polymeric membranes were evaluated as plat-
form for progesterone (Prg)-controlled release. In the design of new drug delivery systems, it is important
to understand the mass transport mechanism involved, as well as predict the process kinetics. Drug release
experiments were conducted and the experimental results were evaluated using engineering approaches
that were extrapolated to the pharmaceutical field by our research group. Membranes were loaded with
different Prg concentrations and characterized by scanning electron microscopy (SEM), differential
scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). SEM images showed
that membranes have a dense structure before and after the progesterone addition. DSC and FTIR
allowed determining the influence of the therapeutic agent in the membrane properties. The in vitro
experiments were performed using two different techniques: (A) returning the sample to the receptor
solution (constant volume of the delivery medium) and (B) extracting total volume of the receptor
solution. In this work, we present a simple and accurate Blumped^ second-order kinetic model. This
lumped model considers the different mass transport steps involved in drug release systems. The model
fits very well the experimental data using any of the two experimental procedures, in the range 0≤t≤∞ or
0≤Mt≤M∞. The drug release analysis using our proposed approaches is relevant for establishing in vitro–-
in vivo correlations in future tests in animals.

KEY WORDS: biodegradable polymers; controlled release/delivery; drug transport; mathematical
models; membranes.

INTRODUCTION

Controlled-release systems have been developed to allow
continuous and sustained drug release in the body, to protect
drug from physiological degradation or elimination, to im-
prove patient compliance, and to enhance quality control in
manufacturing of drug products. When designing controlled-
release systems, it is important to identify and understand
particular mechanisms involved in release processes. Often,
more than one mechanism is involved at a given time or
different mechanisms may dominate at different stages of the
delivery processes.

In the design of new drug delivery systems, it is important
to understand the mass transport mechanism involved in the
release, as well as quantitatively predict the kinetics of the
process. Thereby, through suitable mathematical models, it is
possible to estimate the effect of system design parameters on
the drug release kinetics (1–5).

The vast majority of theoretical models are based on
diffusion equations. The phenomenon of diffusion is intimate-
ly connected to the structure of the material through which the
diffusion takes place; thus, the morphology of the polymeric
materials should be considered for a successful model. There
are some interesting reviews addressing these aspects in
controlled-release formulations (1,6–10).

The mechanisms of drug release could be classified into
diffusion, chemically or swelling-controlled processes (11–13).
Drug transport through the polymer bulk, known as diffusion, is
controlled by the mass transfer in the matrix itself. Particularly,
diffusion-controlled systems are divided into monolithic (matrix)
and reservoir (membrane or core–shell) controlled systems (14).
In the first case, the drug is dissolved and uniformly distributed on
a polymeric support. If its content is greater than the drug solu-
bility in the polymer, only part of the agent is dissolved and the
remainder is dispersed as fine solid particles. In the reservoir
system, the drug and the barrier material (often polymers) which
controls the release rate are physically separated; the drug is at
the center of the dosage form, while the polymer forms a mem-
brane that surrounds the drug reservoir (capsule).

At the macroscopic level, the diffusion of drug molecules
through the polymer can be described by the Fick’s law of
diffusion. Based on this equation, several empirical and semi-
empirical models were developed. The Higuchi equation (15)
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is a famous and used mathematical approach to describe drug
release rates from matrix systems. An important advantage of
this equation is its simplicity. However, when applied, the
assumptions of the Higuchi model should be considered: drug
concentration is above its solubility threshold, drug diffusivity
remains constant, and perfect sink conditions are maintained,
among others.

A more comprehensive, but still very simple, semi-
empirical equation to describe drug release from polymeric
systems is the so-called power law or Korsmeyer-Peppas equa-
tion (16).

Mt

M∞
¼ ktn ð1Þ

where Mt and M∞ are the amounts of drug released at time t
and at equilibrium. The fractional amount of drug released
(Mt/M∞) at time t is expressed as a constant k, incorporating
structural and geometric characteristics of the device and a
potential relationship with time, where n is the release expo-
nent, which varies between 0<n<1 and provides information
about the drug release mechanism. Therefore, depending on
the n value, two types of mechanism can be assumed: (a) for
0.4<n<0.5 (depending on device geometry), a Fickian diffu-
sion occurs, indicating diffusion-controlled drug release; (b)
when n≅1.0, it indicates that transport mechanism involving
swelling-controlled drug release can be assumed. Values of
0.5<n<1.0 is an indicative of superposition of both phenomena
(anomalous transport). This equation’s main disadvantage is
that the n coefficient may take a value of 0.5 which would
indicate a diffusion-controlled drug release mechanism, and
this value may nevertheless be due to the superposition with
other effects such as polymer swelling, degradation, or ero-
sion, occurring during drug release (10). It should be noticed
that (Eq. 1) could only be applied for a total amount of drug
release lower than 60%.

In the veterinary field, drug administration through
controlled-release systems is very interesting because it re-
duces the number of interventions by the veterinarian, which
means less stress for animals and lower costs. Moreover, they
are important to achieve effective control in reproduction. In
this context, progesterone is widely used in the control of
estrogen. The controlled release of progesterone can maintain
the proper level of drug used in insemination protocols,
allowing ovulation synchronization. There are several studies
that incorporate progesterone in different polymeric matrices
with this purpose (17–22).

Among the materials used to prepare these systems,
polymers are of interest, particularly those that are biodegrad-
able and from natural sources. There is growing interest for
the group of biopolymers known as polyhydroxyalkanoates,
which are biodegradable and biocompatible linear polyesters
that have proven to be excellent candidates for medical and
pharmaceutical applications (23–30).

Particular attention has been focused on the use of poly(3-
hydroxybutyrate) (PHB). This polymer is synthesized by bacteri-
a l f e rmen ta t i on and , un l i ke o the r member s o f
polyhydroxyalkanoates family (polyhydroxyvalerate,
polyhydroxyhexanoate), is produced in greater amount by bacte-
ria of different genera (31). This polymer is biocompatible, bio-
degradable, and can be converted completely into carbon dioxide

and water by the action of microorganisms in natural environ-
ments (32,33). For these reasons, it has been widely studied for
medical uses, food, and packing material as well (33–36).

In the present contribution, technological research is
based on a case of special relevance for countries with large
dairy and livestock production. It is focused on the adminis-
tration of meat production promoters such as progesterone
(Prg), using biodegradable polymeric membranes as platform
for the drug-controlled release. The drug is incorporated into
PHB matrices, evaluating the Prg effect on morphological and
structural membrane properties.

We present a pre-formulation study concerning the de-
sign of films to be used in drug delivery systems in the mucosa.
The management of estrous control of livestock through phar-
macologic intervention using intravaginal inserts containing
progesterone represents a valuable farm management tool to
enhance production, enrich genetic stock characteristics, and
so forth (37). The vagina of livestock animals, such as cattle
and sheep, is an attractive site for drug delivery because of the
easiness with which drugs are administered, the easiness to
remove the system as well (if it is not biodegradable), and its
ability to retain drug delivery systems for prolonged periods
(weeks) (37). Intravaginal veterinary drug delivery systems
have been studied and developed for the administration of
synthetic and natural hormones such as progesterone, methyl
acetoxy progesterone, fluorogestone acetate, and estradiol
benzoate (38–40).

The availability of new materials and the development of
innovative delivery systems broaden the research field to
reach successful platforms.

The objectives of this work were to design, characterize
and assess the progesterone release from these innovative
systems using engineering approaches that were extrapolated
to the pharmaceutical field, by our research group. Transport
and kinetic phenomena involved in drug release processes
were both considered by the lumped model. Furthermore,
these models comply with the declaration done 40 years ago
by Aris (41) and more recently by Levenspiel (42): Bmodels
are needed as simple as possible to provide a good description
of the system behavior.^ Release phenomena and their con-
nection to the structural properties of the synthesized mem-
branes were established.

EXPERIMENTAL

Materials

The polymer PHB was used (Fig. 1a). Powder PHB
(Mw≈524,000 g/mol) was kindly provided by BIOCYCLE®,
PHB Industrial S.A. (Brazil) with a purity of 99.5% and
moisture content below 0.3%. Chloroform, by Cicarelli (Ar-
gentina), was used as solvent and Prg as drug (Farmabase,
Rovereto, Italy) (Fig. 1b). All chemicals were of analytical
grade and used without further purification.

Membrane Synthesis

Membranes were prepared by the solution-casting tech-
nique (43). PHB was dissolved in chloroform at 60°C for 4 h
under reflux, to keep the concentration constant. Membrane
samples were prepared by casting the chloroform solution in
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glass Petri dishes. Solvent evaporation was completed after
24 h at room temperature. For progesterone-loaded mem-
branes, the drug was introduced by direct dispersion in the
polymeric solution, stirring constantly at room temperature.
Finally, the films were obtained using the same procedure for
pure polymeric membranes. Drug content ranged from 23 to
33 wt%. Once the solvent evaporation process was completed,
an IR spectroscopy study was performed in order to verify the
absence of chloroform in the loaded membranes.

Membrane thicknesses were measured by an Electronic
Outside Micrometer 0-1^, 54-850-001 (Fowler, China) and
verified with cross section membranes scanning electron mi-
croscopy (SEM) images (around 110 μm).

Characterization

The melting temperatures of Prg, composite membranes
(PHB—progesterone), and physical mixture of both compo-
nents were determined using differential scanning calorimetry,
DSC882E—Mettler Toledo, from the Bioforge Institute, Val-
ladolid University, Spain. Each sample was sealed in an alu-
minum pan, and all scans were carried out under nitrogen
atmosphere (22.5 ml/min−1). The samples were heated from
−20°C to 200°C at a heating rate of 10°C/min.

Cross sections of the membranes have been observed
by SEM (JEOL JSM-6480 LV), LASEM laboratory
(UNSa – CONICET). The dried samples were fractured in
liquid nitrogen, to avoid structure deformations, sputtered
with a thin layer of gold (Denton Vacuum LLC Desk IV
Sputter), and then mounted on the sample stand.

Fourier transform infrared spectroscopy (FTIR) data
were recorded on a GX FTIR Perkin Elmer Spectrometer.
Transmission spectra of powder PHB and Prg were obtained
from the samples diluted with KBr. For PHB–Prg membranes,
IR was performed by transmission with the membranes casted
over silicon wafers.

In Vitro Release Experiments

Experimental procedures are of crucial importance to
know exactly what the data obtained means and how it must
be treated to fit mathematical model or to compare results
that come using different experimental techniques.

The in vitro release data measurements were performed
using a pre-weighed progesterone-loaded membrane, of a
known thickness, placed in contact with the release medium
(pH 6.8 buffer phosphate solution), at 32°C. Samples were
withdrawn at preset time intervals and the amount of

progesterone released was determined in triplicate using
UV-visible spectroscopy (UV-Visible 2100C) at 245 nm. The
validation of the analytical method was performed as indicat-
ed in the ICH guideline (44). The hormone releases from the
membranes were performed under two different techniques:

& Technique A, constant volume of the release medium: the
Prg-loaded membrane was brought into contact with 100 ml
of the release medium. A 3 ml sample volume was extracted
for UV spectrophotometry quantification and then immedi-
ately returned to the original solution, to maintain the total
volume constant (it was not replaced by equal volume of
fresh medium). This procedure fulfills the batch process
conditions (i.e., constant mass of drug in the system). Sam-
ples were taken every 15 min in the first hour, and then
every 30 min. Each experiment lasts at least 4 h.

& Technique B, total extraction volume was withdrawn: drug-
loaded membrane was introduced in 10 ml solution. For UV
spectroscopy quantification, the entire release medium was
removed and replaced with an equal volume of fresh medi-
um. This technique follows Bperfect sink conditions^ (i.e.,
the drug concentration in the surrounding fluid is negligible
at all times) (13). This procedure was repeated every 15 min
during the first hour, and then every 30 min. Each experi-
ment lasts at least 4 h.

With these procedures, if the membrane is kept in solu-
tion long enough, the amount released can be experimentally
well quantified, but the change is relatively small to be con-
sidered differential; then the drug released rate can be
expressed as follows:

dMt

dt
≅
Δ Mtð Þ
Δt

ð2Þ

Mt is the cumulative amount of drug released at time t.
Thus, when technique B was used, the highest drug release
rate at each time was found, since the driving force was always
the maximum one.

The progesterone loads employed in both experimental
techniques were 23, 29, and 33 wt%. The films were fixed with
a metal mesh and then placed at the bottom of the vessel for
technique A (membranes of 3×4 cm) and in tubes for tech-
nique B (membranes of 1×3 cm). Vessel and tubes were set in
a continuous moving shaker bath (45–47). For each composi-
tion and technique, three membrane samples were evaluated
and the mean value was reported.

Modeling of Release Profiles

In general, the mechanisms involved in the drug control
release consider several steps. These steps can be as follows:
drug dissolution, diffusion through the polymeric matrix,
eventually polymer swelling, and then transference to the
receptor solution at the membrane–fluid interface. The set of
differential equations that describe these proesses are com-
plex and needs to be solved numerically. Therefore, a single
explicit analytical solution function between the mass of drug
release and time are not possible to obtain.

We propose a mathematical model that follows a lumped
second-order kinetics. The drug release rate is directly

O

H

O

OH
n O

H

H

H

H

Oa b

Fig. 1. Chemical structure of a poly(3-hydroxybutyrate) (PHB) and b
progesterone (Prg). Above and below-the-plane bonds indicate meth-

yl groups (CH3).
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proportional to the square of the amount of drug available in
the membrane at each moment (Eq. 3). We found that this
model satisfactorily describes processes where diffusion and
transfer phenomena are present, or when only external trans-
fer exists into a fluid medium where the drug concentration
increases steadily (48–51).

dMt

dt
¼ k1 M∞−Mtð Þ2 ð3Þ

Mt is the total amount of drug released (technique A), or
the cumulative mass of drug released (technique B), at time t,
respectively. M∞ is the total amount of drug feasible to be
released at equilibrium. By elementary integration of this
differential equation, between the initial condition (t=0,
Mt=0) and any other (t=t, Mt=Mt), Eq. 4 is obtained:

Mt ¼ M∞
2 � k1 � t

1þ M∞ � k1ð Þ � t½ � ¼
a� t

1þ b� t½ � ð4Þ

Where

a ¼ M∞
2 � k1 and b ¼ M∞ � k1 ð5Þ

Therefore,

a
b
¼ M∞ ð6Þ

Results obtained with both techniques fit this model.
Eq. 4 can be put in linear forms as follows:

t
Mt

¼ 1
a
þ b

a

� �
� t ð7Þ

By using Eq. 7 and making the graphic of (t/Mt) versus
time (t), the values of parameters a and b are obtained.

However, the best procedure to fit the model with exper-
imental data is to carry out a nonlinear regression analysis
using as first guess the values of a and b found graphically. We
did the nonlinear regression analysis applying the Polymath
5.1 program.

RESULTS AND DISCUSSION

Scanning Electron Microscopy

Figure 2 shows SEM images of powder Prg (Fig. 2a), pure
PHB membrane (Fig. 2b), and a PHB membrane loaded with
33 wt% of Prg (Fig. 2c). SEM images showed that the PHB
membrane structure is fully dense, which remains after incorpo-
rating the drug. For the PHB–Prg membranes, the presence of
progesterone crystals was observed, suggesting that their content
is above the solubility limit in the polymer. This is of importance in
modeling the drug release kinetics, the assumptions made, and
the boundary conditions assumed. The distribution of the crystals
was uniform through the entire thickness of the membranes,
indicating that the drug incorporation in the film was effective.

Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) was used to de-
termine the melting temperature of Prg, PHB–Prg powder
physical mixtures, and Prg-loaded PHB membranes. Pure
PHB has two melting temperatures, a common behavior in
several semicrystalline polymers and was previously reported
by one of the authors (52).

Progesterone melting point is 131°C. When it is physically
mixed with powder PHB, this value is maintained while PHB
melting point is 170°C (Fig. 3). Melting temperature values
decrease slightly as the progesterone is incorporated in the
PHB matrix (TPrg=118°C and TPHB=160°C) (Fig. 3). The re-
ductions of melting temperatures observed in the case of
polymeric blends are associated to the weakening of poly-
mer–polymer interactions and changes in the polymer struc-
ture (17). So in this case, progesterone has a plasticizer effect
within the PHB polymer chains. The Prg melting peak in the
membrane is broader than that for the pure drug, confirming
the existence of polymer chain–drug interactions (53).

FTIR Spectroscopy

The FTIR spectra of pure Prg, PHB, and PHB–Prg mem-
branes with different therapeutic agent loadings are shown in
Fig. 4. In the spectrum of pure progesterone (Fig. 4(a)), there
are two sharp and well-resolved bands at 1662 cm−1 (ν1
(C=O)) and 1698 cm−1 (ν2 (C=O)) assigned to carbonyl-
stretching bands of C3 and C20, respectively, and a less-
intensive band at 1615 cm−1 corresponding to the stretching
vibration band of C=C (54–56).

The pure PHB spectra (Fig. 4(b)) can be divided in the
following areas: the 3020–2830 cm−1 range (the bands correspond
to C–H stretching vibration), the peak in 1727 cm−1 (the most
intensive band due to C=O stretching vibration of the crystalline
ester carbonyl group), and the 1500–800 cm−1 range (due to the
CH3, CH2, CH bending vibration, C–O–C and C–C stretching
vibration (57)). The peak in 1057 cm−1 is assigned to C–O
stretching vibrations from alcohols. The peaks in 1185 and
1280 cm−1 are assigned to the stretching vibrations of the ester C–
O–C group. The peak in 1229 cm−1 is due to the CH2 wagging and
twisting modes (58).

The FTIR spectrum of PHB–Prg-loaded membranes
shows the characteristic bands of Prg. The band at 1698 cm−1

is overlapped with the intensive PHB band at 1727 cm−1. The
peak at 1662 cm−1 appears shifted to 1669 cm−1, which could
be attributed to a weak hydrogen bonding (22). The band
intensity increases with the Prg content in membranes.

Moreover, as stated in BMembrane synthesis^, FTIR
studies were carried out in order to verify complete chloro-
form evaporation from the membranes. Chloroform has the
most intense IR bands at 3020 cm−1 (C–H stretching vibra-
tions), 1219 cm−1 (C–H bends), 773 cm−1 (C–Cl stretching
vibrations), and 671 cm−1 (C–Cl bends). The first band men-
tioned (3020 cm−1) was used for monitoring traces of solvent.
This band is placed at higher frequencies than those due to C–
H PHB vibrations, whose main peaks appear at 2975 and
2934 cm−1 (Fig. 4).

Furthermore, the band at 1219 cm−1 is not appropriate for
chloroform detection due to the overlap with PHB bands.
Finally, no bands were observed at lower frequencies (800–
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650 cm−1 range) in loaded membrane spectra (not shown in
the figure), confirming solvent absence.

In Vitro Progesterone Release: Modeling

Technique A: Returning the Sample to the Original Solution

Figure 5 shows the progesterone mass release from PHB–
Prg membranes, with different Prg content, as function of

time. It can be seen that the amount of hormone released is
influenced by the original progesterone loaded in the mem-
brane; the higher the Prg load, the lower the drug release. This
behavior can be attributed to the presence of an excess of
progesterone crystals in the membrane and particularly at the
interface. Dissolution of these crystals in the release medium
is hindered by the very low Prg solubility in the polymer as
well in the receptor solution. Thus, the effective surface avail-
able for drug release decreases as Prg loading increases. When
the dissolved and non-dissolved Prg coexist within the poly-
meric matrix, the dissolved drug is the only available for
diffusion.

Chang et al. (18) found for the progesterone/poly(ε-
caprolactone) (PCL) system that the cumulative released
amount was higher for the samples with lower drug
content. Progesterone loads in PCL matrices influenced
the amount of drug released and the time at which the
process is carried out. However, the pattern of drug release
was similar among the different loads they studied. The
authors argue that progesterone delivery may be controlled
by factors influencing drug dissolution (such as the
dispersed particles sizes and solubility) rather than
diffusion. Benita et al. (59) incorporated nifedipine as
model drug in polyacrylate, a poorly water-soluble drug
as progesterone. They reported that an increase in drug
concentration decreased the release rate due to drug
crystalline domains formation in the microspheres. They
also concluded that nifedipine dissolution in the
microspheres controls the overall release kinetic process
since it is probably the slowest step in the kinetic process.

Experimental data showed a very good fit through a
nonlinear regression analysis (Polymath 5.1 program)
(Fig. 5). Thus, a and b parameters were determined, and M∞

and k1 values were calculated (Eqs. 5–6) and reported in
Table I with a 95% confidence level.

Note that the model can be applied for 0≤t≤∞, since for
t→∞, the model gives M∞ (6).

Prg

min

°C-20 0 20 40 60 80 100 120 140 160 180

0 2 4 6 8 10 12 14 16 18 20 22

PHB-Prg (29%) physical mixture

Prg (29wt%) PHB membrane

H
ea

t 
flu

x
E

xo

Fig. 3. DSC of progesterone, PHB–Prg (29 wt%) physical mixture,
and Prg (29 wt%)-loaded PHB membranes

a

b c

Fig. 2. SEM micrographs of a powder Prg, b pure PHB cross section membrane, and c Prg-
loaded PHB membrane: PHB–Prg, 33 wt%
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The release rates are obtained deriving Mt versus time in
Eq. 4, which results in Eq. 8.

dMt

dt
¼ a

1þ b� tð Þ2 ð8Þ

Technique B: Release Assays with Complete Removal of the
Medium

The total mass of released Prg showed a linear increase
with time (Fig. 6), attributable to a constant driving force due
to the high concentration of progesterone in the membrane,
i.e., constant membrane–fluid surface concentration over
time, as well as the use of the same volume of fresh solution
(Mt≈0), resulting in a simple external mass transfer process.
Therefore Eq. 3 reduces to

dMt

dt
¼ k1 �M2

∞ ¼ k2 ð9Þ

After integration, the linear model represented by Eq. 10
is obtained.

Mt ¼ k2 � t ð10Þ

The cumulative drug release profiles performed under
technique B, in this contribution (total volume extraction),
follows Eq. 10.

Regarding relationship between the Prg released and the
initial amount in the membrane, the same behavior as tech-
nique A (when the sample was returned to the original

solution) was observed. At higher initial Prg load, drug release
rate lowers. Dotted lines in Fig. 6 correspond to Eq. 10; k2 and
R2 values, obtained by regression analysis, are presented in
Table II with a 95% confidence level. In this case, the drug
release rate was constant as predicted by Eq. 9.

Finally, comparative analysis of release rates obtained by
both drug extraction techniques was carried out. The release
rates were normalized considering both the effective mem-
brane interface area and the extractor liquid volume. At the
beginning of the release process (t=0), the system conditions
were the same for both techniques. Therefore, the normalized
release rates (NRR) should be equal for both experimental
procedures used.

Due to the low Prg solubility in the PHB, the density of both
PHB and Prg could be considered as pure compounds, i.e.,

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400

M
t 

(m
g

)

time (min)

23 wt% 29 wt% 33 wt%

Fig. 5. Prg concentration effect on the drug release profile from the
PHB–Prg membranes using technique A. Symbols are the mean value
experimental data and their sizes represent the standard deviation.
Lines represent the theoretical release predictions with nonlinear
regression fit developed in this work (Eq. 4)

3200 2800 2400 2000 1800 1600 1400 1200 1000
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Fig. 4. Infrared spectra of a pure Prg; b pure PHB membrane; and Prg-PHB membranes
with c 23 wt% Prg, d 29 wt% Prg, and e 33 wt% Prg
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1.166 g/cm3 for Prg and 1.300 g/cm3 for PHB. Therefore, the
volume fraction of PHB for the three Prg-loaded membranes
could be obtained. These values are 0.750, 0.687, and 0.645v/v
PHB for the 23, 29, and 33 wt% Prg, respectively.

Considering the stereometric principle, the PHB volume
fraction of themembrane is equal to the fraction of area exposed
(due to the uniform distribution of Prg crystal in the membrane,
Fig. 2c). Then, the Beffective^ area (Aef) exposed by the mem-
brane is the total interface area of each membrane multiplied by
the volume fraction (surface fraction) of PHB. The normalized
release rate using techniques A (NRRA) and B (NRRB) are
expressed in Eqs. 11 and 12, respectively (mg cmef

2/min/ml).

NRRA ¼ a
Ae f VA

ð11Þ

NRRB ¼ k2
Ae f VB

ð12Þ

where VA and VB are the release medium volumes used for
techniques A and B, 100 and 10 ml, respectively. Results are
reported in Table III.

For both techniques the NRR values at t=0 were approx-
imately equal, with a mean value of 7.26×10−6±8%,

considering experimental error and model fitting, for the three
Prg-loaded membranes. This supports the experimental re-
sults, showing internal consistency of the experimental meth-
odology and the model proposed.

Another evidence that the membrane effective area is the
PHB surface area fraction are the values calculated for the release
rate per unit of effective surface area (RRef) (mg cmef

2/min) in the
complete time interval. For example, when technique Awas used
(see Eq. 8), RRef is calculated with Eq. 13.

RRef ¼ a0

1þ b� tð Þ2 ð13Þ

with

a0 ¼ a
Ae f

ð14Þ

For technique A, the values of a′ are 7.54×10−4, 7.78×10−4,
and 7.51×10−4, for the 23, 29, and 33 wt% Prg membranes.

Figure 7 shows that a single RRef curve fits the results for
the three cases in the complete time range. The RRef is
maximum at the beginning of the release experiments, de-
creasing to very low values after 4 h of contact of the mem-
brane with the medium, as expected.

Regarding the progesterone dissolved in the membrane,
an indirect prediction of the Prg solubility in PHB can be done
using the obtained data with technique A. Taken into account
the membrane volume (Vm), the volume fraction of PHB (v/
vPHB) and M∞ values found for each membrane, the Prg
solubility in PHB (C°prg) is estimated as

Co
Prg ¼ M∞

Vmð Þ � v
.
vPHB

� � ð15Þ

The mean value obtained is (C°prg) =20.00±0.52 mg/
cm3

PHB.
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Fig. 6. Prg concentration effect on the drug release profile from the
PHB–Prg membranes using technique B. Symbols are the mean value
experimental data and their sizes represent the standard deviation.Lines
represent the theoretical drug release predictions with our model

Table II. Coefficient of Model: Mt=k2×t (Eq. 10)

Parameters Progesterone wt%

23 29 33

k2 (mg/min) 3.14×10−4±
1.40×10−5

2.85×10−4±
9.80×10−6

2.65×10−4±
1.50×10−5

R2 0.987 0.993 0.979

Table I. Coefficients of Model: Mt=a×t/(1+b×t) (Eq. 4)

Parameters Progesterone wt%

23 29 33

a (mg/min) 1.36×10−2±
1.04×10−3

1.28×10−2±
7.10×10−6

1.16×10−2±
1.20×10−3

b (min−1) 7.14×10−3±
1.04×10−3

7.08×10−3±
7.50×10−6

6.58×10−3±
1.60×10−3

R2 0.998 0.999 0.998
M∞ (mg) 1.90±3.50×10−2 1.81±1.80×10−2 1.77±3.60×10−2

k1 (mg/min) 3.75×10−3±
1.00×10−4

3.90×10−3±
7.20×10−5

3.72×10−3±
1.80×10−4

Table III. Normalized Release Rates (NRR) (mg/cmef
−2/min/ml), at

t=0

Progesterone load

23 wt%
(0.75 v/vPHB)

29 wt%
(0.687 v/vPHB)

33 wt%
(0.645 v/vPHB)

NRRA 7.54×10−6 7.78×10−6 7.51×10−6

NRRB 7.16×10−6 6.91×10−6 6.85×10−6

NRRA normalized release rate using technique A, NRRB normalized
release rate using technique B, v/vPHB volume fraction of PHB
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The solubility of the progesterone in the release medium
was 0.021±0.001 mg/ml, measured according to the procedure
indicated by Grant and Higuchi (60).

CONCLUSIONS

Results showed that PHB films are able to control pro-
gesterone release, which would reduce the variability in drug
performance. The latter aspect is increasingly important given
the current emphasis on pharmaceutical quality by design
(QbD) by regulatory agencies such as the Food and Drug
Administration (FDA).

Result analysis using our proposed approach yielded sim-
ple and explicit relations between mass and drug released rate.
The model can be applied without limitations of time nor mass
of drug released. The kinetic parameters determined could be
extrapolated to in vivo findings and could qualitatively provide
insight into the potential use of these systems in veterinary.

Internal consistency of both experimental procedures
used in this work was verified. Furthermore, a single RRef
for the three loaded membranes was found, which confirms
that the PHB fraction in the membrane interface is the effec-
tive surface for the mass transference.
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